Platform Guide: VIPRION® 2400

MAN-0344-05
Table of Contents

Legal Notices..7
Legal Notices..7

The VIPRION® 2400 Platform...9
About the platform..9
About the chassis...9
About the blades...10
USB LCD module...11
Using the USB LCD module..11
About LCD menus..12
Indicator LEDs...13
Indicator LED actions...13
Blade indicator LEDs...14
Blade standard operating states..14
Blade LED status conditions..14
Fan tray indicator LED..14
AC power supply indicator LEDs..15
DC power supply indicator LEDs..15
LED alert conditions..16
Defining custom alerts...16
Platform interfaces..17
About blade interfaces...17
About 40GbE QSFP+ interfaces..17
About managing interfaces..19
Network interface LED behavior..21
Transceiver module specifications..22
Cable pinout specifications..22
Always-On Management...23
AOM Command Menu options..23
Accessing the AOM Command Menu from the serial console...24
Capturing a blade console..24

Platform Installation...25
About installing the platform..25
About general recommendations for rack mounting..25
Hardware included with the AC-powered chassis...25
Hardware included with blades..26
Peripheral hardware requirements..26
Unpacking the chassis..27
Table of Contents

About installing the chassis..28
 About the two-point rack mounting brackets..29
 About the four-point rack mounting rail kit...30
 Installing the cable management system...31
About grounding the chassis..32
 Connecting the chassis grounding stud to the ground terminal...............................33
About powering the VIPRION 2400 AC platform...33
 Powering the AC platform...34
About powering the VIPRION 2400 DC platform...35
 Connecting DC power to the platform..35
About installing blades...36
 Removing a blank..36
 Removing a blade..37
 Installing a blade..37
Connecting the cables and other hardware..39
About cluster management..40
 Configuring the cluster IP address from the LCD..40
 Configuring the cluster IP address using the config utility.....................................42
 Configuring the cluster IP address using tmsh..42
Licensing the platform..42
Verifying blade availability..43

Platform Maintenance..45

About maintaining the platform...45
About AC power supplies...45
 Removing a power supply...46
 Installing a power supply...46
About DC power supplies...47
 Removing a power supply...48
 Installing a DC power supply..48
 Wiring the DC connector...49
 Connecting DC power to the platform..50
About the fan tray...51
 Replacing the fan tray...52
About the drive assembly...52
 Replacing a hard disk drive assembly..53

Environmental Guidelines..55

General environmental guidelines...55
Guidelines for the AC-powered platform..56
Guidelines for the DC-powered platform..56
Platform airflow diagram...57

Platform Specifications..59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General specifications for system features</td>
<td>59</td>
</tr>
<tr>
<td>Blade hardware specifications</td>
<td>59</td>
</tr>
<tr>
<td>Chassis hardware specifications</td>
<td>60</td>
</tr>
<tr>
<td>Chassis environmental operating specifications</td>
<td>60</td>
</tr>
<tr>
<td>About AC power requirements</td>
<td>61</td>
</tr>
<tr>
<td>About AC power cables</td>
<td>61</td>
</tr>
<tr>
<td>AC power redundancy provisioning</td>
<td>61</td>
</tr>
<tr>
<td>AC platform power consumption (low-line input)</td>
<td>62</td>
</tr>
<tr>
<td>AC platform power consumption (high-line input)</td>
<td>63</td>
</tr>
<tr>
<td>DC power requirements</td>
<td>64</td>
</tr>
<tr>
<td>DC platform power consumption</td>
<td>64</td>
</tr>
<tr>
<td>Safety requirements</td>
<td>65</td>
</tr>
<tr>
<td>EMC requirements</td>
<td>65</td>
</tr>
<tr>
<td>Acoustic, airflow, and altitude specifications</td>
<td>66</td>
</tr>
<tr>
<td>China RoHS Requirements</td>
<td>69</td>
</tr>
<tr>
<td>RoHS declaration</td>
<td>69</td>
</tr>
<tr>
<td>Hazardous substance levels for China</td>
<td>69</td>
</tr>
<tr>
<td>Repackaging Guidelines</td>
<td>73</td>
</tr>
<tr>
<td>About repackaging the platform</td>
<td>73</td>
</tr>
<tr>
<td>Repackaging the chassis</td>
<td>73</td>
</tr>
<tr>
<td>Repackaging a blade</td>
<td>75</td>
</tr>
<tr>
<td>Returned Material Data Security Statement</td>
<td>79</td>
</tr>
<tr>
<td>About returned material data security</td>
<td>79</td>
</tr>
<tr>
<td>About memory technologies used in F5 equipment</td>
<td>79</td>
</tr>
<tr>
<td>Volatile memory</td>
<td>79</td>
</tr>
<tr>
<td>Battery-backed volatile memory</td>
<td>79</td>
</tr>
<tr>
<td>Non-volatile memory</td>
<td>79</td>
</tr>
<tr>
<td>About removing data from F5 components</td>
<td>80</td>
</tr>
<tr>
<td>Removing sensitive data from storage drives</td>
<td>80</td>
</tr>
<tr>
<td>Removing IP address data from Always-On Management</td>
<td>81</td>
</tr>
<tr>
<td>Removing sensitive data from an internal hardware security module (HSM)</td>
<td>81</td>
</tr>
</tbody>
</table>
Table of Contents
Publication Date
This document was published on September 8, 2015.

Publication Number
MAN-0344-05

Copyright
Copyright © 2015, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes no responsibility for the use of this information, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, copyright, or other intellectual property right of F5 except as specifically described by applicable user licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks
AAM, Access Policy Manager, Advanced Client Authentication, Advanced Firewall Manager, Advanced Routing, AFM, APM, Application Acceleration Manager, Application Security Manager, AskF5, ASM, BIG-IP, BIG-IP EDGE GATEWAY, BIG-IQ, Cloud Extender, Cloud Manager, CloudFucious, Clustered Multiprocessing, CMP, COHESION, Data Manager, DDoS Frontline, DDoS SWAT, Defense.Net, defense.net [DESIGN], DevCentral, DevCentral [DESIGN], DNS Express, DSC, DSI, Edge Client, Edge Gateway, Edge Mobile, Edge Mobility, Edge Portal, ELEVATE, EM, ENGAGE, Enterprise Manager, F5, F5 [DESIGN], F5 Agility, F5 Certified [DESIGN], F5 Networks, F5 SalesXchange [DESIGN], F5 Synthesis, f5 Synthesis, F5 Synthesis [DESIGN], F5 TechXchange [DESIGN], Fast Application Proxy, Fast Cache, FCINCO, Global Traffic Manager, GTM, GUARDIAN, iApps, iBR, iCall, iControl, iHealth, Intelligent Browser Referencing, Intelligent Compression, IPv6 Gateway, iQuery, iRules, iRules OnDemand, iSession, L7 Rate Shaping, LC, Link Controller, LineRate, LineRate Point, LineRate Precision, LineRate Systems [DESIGN], Local Traffic Manager, LROS, LTM, Message Security Manager, MobileSafe, MSM, One Connect, Packet Velocity, PEM, Policy Enforcement Manager, Protocol Security Manager, PSM, Ready Defense, Real Traffic Policy Builder, SalesXchange, ScaleN, SDAS (except in Japan), SDC, Signalling Delivery Controller, Solutions for an application world, Software Designed Application Services, Silverline, SSL Acceleration, SSL Everywhere, StrongBox, SuperVIP, SYN Check, SYNTHESIS, TCP Express, TDR, TechXchange, TMOS, TotALL, TDR, TMOS, Traffic Management Operating System, Traffix, Traffix [DESIGN], Transparent Data Reduction, UNITY, VAULT, vCMP, VE F5 [DESIGN], Versafe, Versafe [DESIGN], VIPRION, Virtual Clustered Multiprocessing, WebSafe, and ZoneRunner, are trademarks or service marks of F5 Networks, Inc., in the U.S. and other countries, and may not be used without F5's express written consent.

All other product and company names herein may be trademarks of their respective owners.

Patents
This product may be protected by one or more patents indicated at: https://f5.com/about-us/policies/patents
Export Regulation Notice
This product may include cryptographic software. Under the Export Administration Act, the United States government may consider it a criminal offense to export this product from the United States.

RF Interference Warning
This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

FCC Compliance
This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This unit generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

Any modifications to this device, unless expressly approved by the manufacturer, can void the user's authority to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance
This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance
This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to Information Technology products at the time of manufacture.

VCCI Class A Compliance
This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take corrective actions. VCCI-A

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。 VCCI-A
The VIPRION® 2400 Platform

About the platform

The VIPRION® 2400 system provides you with the flexibility and feature-rich capabilities of F5® products on a powerful and highly-extensible hardware platform. With this platform, you install and configure multiple F5 products using hot-swappable blades. This provides you with the ability to add, remove, or change the platform's configuration to best fit your network. Many components are available for you to add, remove, or change including the blades, power supplies, fan tray, and more. This configuration allows for an extremely robust and flexible system that can manage large amounts of application traffic, and remain operational even if one of its components goes offline.

VIPRION platforms include two types of components: blades, which provide the hardware and software needed to manage network traffic, and a chassis, which houses the blades.

The VIPRION 2400 platform supports either AC or DC power. If you ordered DC power as a factory option, the platform comes pre-installed with DC power supplies. If you ordered DC power supplies from F5 Networks as an upgrade to an AC-powered platform, you have to switch out the AC power supplies for DC power supplies.

Important: The chassis and blades are shipped in separate boxes. The blades are not designed to be shipped inside a chassis.

Although the VIPRION 2400 platform is highly extensible and designed to be easy to implement, familiarity with the platform components can help ensure that you install and integrate the platform successfully and effectively.

About the chassis

The chassis is the housing unit that contains all of the components necessary for the VIPRION® 2400 platform to operate effectively.

Figure 1: Front view of a VIPRION C2400 chassis with four blades installed and pre-installed two-point rack mounting brackets
1. Power supply 1
2. Power supply 2
3. Blades (1-4)

The fan tray is on the back of the chassis.

Figure 2: Back view of the chassis

About the blades

A blade is the primary component that handles the traffic management within the VIPRION® platform. You can install up to four blades in a VIPRION 2400 chassis. These blades comprise a group, known as a cluster. The chassis includes blanks in the slots where blades are not installed.

Blanks must be installed in all unused slots, as they help ensure proper airflow within the chassis and EMI compliance of the unit.

Figure 3: Front view of the B2100/B2150 blade

1. Captive screws
2. SFP+ ports (8)
3. Console port
4. Serial (hard-wired) failover port
5. Management port
6. USB ports (2)
7. Indicator LEDs
Figure 4: Front view of the B2250 blade

1. Captive screws
2. 40GbE QSFP+ fiber ports (4)
3. Console port
4. Management port
5. USB ports (2)
6. Indicator LEDs

USB LCD module

An external USB LCD module is available for use with the VIPRION 2000 Series platform.

Note: The USB LCD module is an optional device that is not included with the platform by default. It works only with VIPRION® 2000 Series platforms.

Figure 5: USB LCD module

Using the USB LCD module

You can connect a USB LCD module to the primary blade in a VIPRION® 2000 Series chassis and use the module to configure and manage the unit without attaching a console or network cable.

1. Insert the plug into one of the two USB ports located on the front of the primary blade (the blade on which the Primary LED is lit).
 The USB LCD module powers on and displays BIG-IP® software information.
2. Press the Check button to clear any alerts on the LCD screen.
You must clear any alerts on the screen before you can use the LCD module.

3. Press the X button to put the LCD in Menu mode.
 The Left Arrow, Right Arrow, Up Arrow, and Down Arrow buttons are functional only when the LCD is in Menu mode.

Pausing on a screen

Normally, the screens cycle on the LCD module at a constant rate, but you can pause on a specific screen.
 Push the Check button to switch the LCD screen between Hold and Rotate modes.
 In Hold mode, a single screen is displayed. The Rotate mode changes the screen that is displayed on the LCD screen every four seconds.

Clearing alerts

Use the LCD control buttons to clear alerts from the LCD screen.
 Press the Check button to clear any alerts on the LCD screen.
 You must clear any alerts on the screen before you can use the LCD module.

About LCD menus

There are three menus on the LCD module. You can configure the display options to meet your needs.

Options menu

You can use the Options menu to adjust the display properties of the LCD module.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat</td>
<td>Enables (checked) or disables (unchecked) the heartbeat panel on the LCD.</td>
</tr>
<tr>
<td></td>
<td>This heartbeat does not affect the failover mechanism of the system.</td>
</tr>
<tr>
<td>Backlight</td>
<td>Specifies an LCD screen backlighting option. Select from these options:</td>
</tr>
<tr>
<td></td>
<td>• ON enables the backlight.</td>
</tr>
<tr>
<td></td>
<td>• GRAY enables the software to specify when the backlight is illuminated.</td>
</tr>
<tr>
<td></td>
<td>• OFF disables the backlight.</td>
</tr>
<tr>
<td>Contrast</td>
<td>Sets the contrast of the LCD.</td>
</tr>
<tr>
<td>On Brightness</td>
<td>Adjusts LCD backlight brightness.</td>
</tr>
<tr>
<td>Off Brightness</td>
<td>Controls the brightness of the LCD when the backlight is off.</td>
</tr>
</tbody>
</table>

Screens menu

You can use the Screens menu to specify the information that is displayed on the default screens.
System menu

You can use the System menu to configure the management interface on both clusters and blades. This menu also provides various options for the hardware.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Suboptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>Configures the cluster IP address, netmask, and default gateway for managing</td>
<td>Cluster Mgmt selected from these suboptions:</td>
</tr>
<tr>
<td></td>
<td>the cluster.</td>
<td>• Cluster IP sets the cluster IP address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cluster IP Mask sets the netmask.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gateway sets the default gateway for managing the cluster.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Commit saves your changes.</td>
</tr>
<tr>
<td>Cluster Mbrs</td>
<td>Configures the management IP addresses of the blades within the cluster.</td>
<td>Cluster Mbrs selected from these suboptions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blade [1-4] Mgmt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blade Mgmt IP sets the management IP address of the selected blade within the cluster.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Commit saves your changes.</td>
</tr>
</tbody>
</table>

Indicator LEDs

The VIPRION® 2400 platform includes indicator LEDs in three locations: on the individual blades, on the power supplies, and on the fan tray.

Indicator LED actions

The behavior of the LEDs indicate system or component status.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off (none)</td>
<td>LED is not lit and does not display any color.</td>
</tr>
<tr>
<td>Solid</td>
<td>LED is lit and does not blink.</td>
</tr>
<tr>
<td>Blinking</td>
<td>LED turns on and off at a regular frequency.</td>
</tr>
<tr>
<td>Intermittent</td>
<td>LED turns on and off with an irregular frequency and might appear solid.</td>
</tr>
</tbody>
</table>
Blade indicator LEDs

The blade LEDs indicate whether the blade is a primary or secondary blade, and show alarm and blade status.

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Indicates that the blade is a primary blade for a cluster.</td>
</tr>
<tr>
<td>Secondary</td>
<td>Indicates that the blade is a secondary blade for a cluster.</td>
</tr>
<tr>
<td>Status</td>
<td>Indicates the state of the system.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Indicates a non-specific alert level. Use SNMP traps, system logs, or the LCD display for more information.</td>
</tr>
</tbody>
</table>

Blade standard operating states

The blade LEDs indicate the operating state of a blade.

Note: On power up, the Status LED of each blade turns yellow. When the BIG-IP® software boots successfully, the Status LED changes to green.

<table>
<thead>
<tr>
<th>System state</th>
<th>Primary LED (PRI)</th>
<th>Secondary LED (SEC)</th>
<th>Status LED (STA)</th>
<th>Alarm LED (ALM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active mode</td>
<td>Off/None</td>
<td>Off/None</td>
<td>Green solid</td>
<td>Off/None</td>
</tr>
<tr>
<td>Powered off</td>
<td>Off/None</td>
<td>Off/None</td>
<td>Off/None</td>
<td>Off/None</td>
</tr>
</tbody>
</table>

Blade LED status conditions

The blade LEDs indicate specific operating conditions, such as when a blade is shut down, reset, or not properly seated.

<table>
<thead>
<tr>
<th>Blade state</th>
<th>Primary LED</th>
<th>Secondary LED</th>
<th>Status LED</th>
<th>Alarm LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-initiated blade power down</td>
<td>Green blinking (with traffic)</td>
<td>Green blinking (with traffic)</td>
<td>Green blinking (with traffic)</td>
<td>Off/None</td>
</tr>
<tr>
<td>Blade shut down due to thermal overtemp limit</td>
<td>Yellow blinking (with traffic)</td>
<td>Yellow blinking (with traffic)</td>
<td>Yellow blinking (with traffic)</td>
<td>Red solid</td>
</tr>
<tr>
<td>Blade not seated properly</td>
<td>Yellow blinking (with traffic)</td>
<td>Yellow blinking (with traffic)</td>
<td>Yellow solid</td>
<td>Red solid</td>
</tr>
<tr>
<td>Power supply inserted, but not supplying power</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Red solid</td>
</tr>
</tbody>
</table>

Fan tray indicator LED

The fan tray LED indicates the status of the fan tray.
Action Status

<table>
<thead>
<tr>
<th>Action</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow solid</td>
<td>Indicates that either the fan tray controller is powering on, or one or more fans are not spinning within the specified RPM range.</td>
</tr>
<tr>
<td>Green solid</td>
<td>Indicates that the fan tray controller is fully functional, and all fans are spinning within the specified RPM range.</td>
</tr>
</tbody>
</table>

AC power supply indicator LEDs

The AC power supply LEDs indicate the status of the power supply and power input.

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Indicates that AC input voltage is operational (on) or non-functioning (off).</td>
</tr>
<tr>
<td>DC</td>
<td>Indicates that DC output voltage is operational (on) or non-functioning (off).</td>
</tr>
<tr>
<td>FAIL</td>
<td>Indicates these conditions:</td>
</tr>
<tr>
<td></td>
<td>• No AC input</td>
</tr>
<tr>
<td></td>
<td>• Fan failure</td>
</tr>
<tr>
<td></td>
<td>• Power supply errors or failures (for example, high temperature, high voltage)</td>
</tr>
<tr>
<td>SYS</td>
<td>Indicates these conditions:</td>
</tr>
<tr>
<td></td>
<td>• Yellow status when the fan tray is powered, and one of these conditions are true:</td>
</tr>
<tr>
<td></td>
<td>• AC failure</td>
</tr>
<tr>
<td></td>
<td>• DC failure</td>
</tr>
<tr>
<td></td>
<td>• Any other power supply faults, such as fan failure (indicated by the FAIL LED)</td>
</tr>
<tr>
<td></td>
<td>• Green status when the fan tray is powered, and the power supply is fully functional (AC and DC are OK; no other faults indicated by the FAIL LED).</td>
</tr>
</tbody>
</table>

DC power supply indicator LEDs

The DC power supply LEDs indicate the status of the power supply and power input.

<table>
<thead>
<tr>
<th>LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Indicates that DC input voltage is operational (on) or non-functioning (off).</td>
</tr>
<tr>
<td>OUT</td>
<td>Indicates that DC output voltage is operational (on) or non-functioning (off).</td>
</tr>
<tr>
<td>FAIL</td>
<td>Indicates these conditions:</td>
</tr>
<tr>
<td></td>
<td>• No DC input</td>
</tr>
<tr>
<td></td>
<td>• Fan failure</td>
</tr>
<tr>
<td></td>
<td>• Power supply errors or failures (for example, high temperature, high voltage)</td>
</tr>
<tr>
<td>SYS</td>
<td>Indicates these conditions:</td>
</tr>
<tr>
<td></td>
<td>• Yellow status when the fan tray is powered, and one of these conditions are true:</td>
</tr>
<tr>
<td></td>
<td>• DC failure</td>
</tr>
<tr>
<td></td>
<td>• Any other power supply faults, such as fan failure (indicated by the FAIL LED)</td>
</tr>
<tr>
<td></td>
<td>• Green status when the fan tray is powered, and the power supply is fully functional (DC is OK; no other faults indicated by the FAIL LED).</td>
</tr>
</tbody>
</table>
LED alert conditions

The Alarm LED indicates when there is an alert condition on the system.

Note: The Alarm LED might continue to display until alerts are cleared using the LCD module.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System situation</td>
<td>Alarm LED behavior</td>
</tr>
<tr>
<td>Emergency</td>
<td>Red blinking (with traffic)</td>
</tr>
<tr>
<td>Alert or Critical</td>
<td>Red solid</td>
</tr>
<tr>
<td>Error</td>
<td>Yellow blinking (with traffic)</td>
</tr>
<tr>
<td>Warning</td>
<td>Yellow solid</td>
</tr>
</tbody>
</table>

Defining custom alerts

The `/etc/alertd/alert.conf` and the `/config/user_alert.conf` files on the VIPRION® system define alerts that cause the indicators to change. The `/etc/alertd/alert.conf` file defines standard system alerts, and the `/config/user_alert.conf` file defines custom settings. You should edit only the `/config/user_alert.conf` file.

1. Open a command prompt on the system.
2. Change to the `/config` directory.
   ```
   cd /config
   ```
3. Using a text editor, such as vi or Pico, open the `/config/user_alert.conf` file.
4. Add these lines to the end of the file:
   ```bash
   alert BIGIP_MCPD_MCPDERR_POOL_MEMBER_MON_DOWN "Pool member (.*):(.*) monitor status down."
   { snmptrap OID=".1.3.6.1.4.1.3375.2.4.0.10"
     lcdwarn description="Node down" priority="1"
   }
   alert BIGIP_MCPD_MCPDERR_NODE_ADDRESS_MON_DOWN "Node (.*) monitor status down."
   { snmptrap OID=".1.3.6.1.4.1.3375.2.4.0.12"
     lcdwarn description="Node address down" priority="1"
   }
   alert BIGIP_MCPD_MCPDERR_POOL_MEMBER_MON_UP "Pool member (.*):(.*) monitor status up."
   { snmptrap OID=".1.3.6.1.4.1.3375.2.4.0.11"
   }
   alert BIGIP_MCPD_MCPDERR_NODE_ADDRESS_MON_UP "Node (.*) monitor status up."
   { snmptrap OID=".1.3.6.1.4.1.3375.2.4.0.13"
   }
   ```
5. Save the file and exit the text editor.
 The front panel LEDs now indicate when a node is down.
Platform interfaces

Every platform includes multiple interfaces. The exact number of interfaces that are on the system depends on the platform type.

Each interface on the platform has a set of properties that you can configure, such as enabling or disabling the interface, setting the requested media type and duplex mode, and configuring flow control.

About blade interfaces

B2100 Series blades

The B2100 Series blades have eight 10GbE SFP+ optic interfaces that are connected internally. The SFP+ connectors can each support 10G speed with an F5®-branded optic SFP+ module or 1000 Mbit speed with an F5-branded optic SFP 1GbE module installed.

B2250 blade

The B2250 blade has four 40GbE QSFP+ fiber interfaces that support up to four 40GbE ports (2.1-2.4), which you can use as individual 10GbE ports or as 40GbE ports, depending on how you bundle the ports. There are LEDs for both 10GbE and 40GbE operation.

Figure 6: B2250 blade interfaces and LEDs

Supported transceivers

For current specification information for optical transceivers that are supported by this platform, see F5® Platforms: Accessories.

About 40GbE QSFP+ interfaces

On platforms that include QSFP+ interface ports, you can use the ports as a single 40GbE port or as four 10GbE SFP+ ports.

You can also disable the 40GbE bundle and use them as individual 10GbE ports (1.1-1.4, 1.5-1.8, 1.9-1.12, and 1.13-1.16) using a QSFP+ breakout cable. This cable has a female MPO/MTP connector at one end, which connects to the QSFP+ port, and four LC duplex connectors at the other end, which connect to SFP+ modules on an upstream switch.

Note: If you are using a breakout cable for 10GbE connectivity, you should use the supported distance as detailed in the Specifications for fiber QSFP+ modules section of this platform guide and not the Specifications for fiber SFP+ modules section.
You can order these QSFP+ components from F5 Networks:

- QSFP+ breakout cables (MTP to LC), provided as a pair, in these lengths:
 - 1 meter (F5-UPG-QSFP+-1M-2)
 - 3 meter (F5-UPG-QSFP+-3M-2+)
 - 10 meter (F5-UPG-QSFP+-10M-2)
- F5-branded 40GbE QSFP+ transceiver modules (F5-UPG-QSFP+)

Note: Only the VIPRION B2250 blade includes 40GbE QSFP+ interface ports.

Configuring bundling for 40GbE QSFP+ interfaces using tmsh

You can use `tmsh` to configure bundling for the 40GbE QSFP+ interfaces on the platform. When you disable bundling, you can use the 40GbE ports as individual 10GbE ports.

1. Open the Traffic Management Shell (tmsh).
 - `tmsh`
2. Change to the network module.
 - `net`

 The command prompt updates with the module name:

 `user@bigip01(Active) (/Common) (tmos.net)#`

3. Configure bundling for a specific interface, where `<interface_key>` is 2.1, 2.2, 2.3, or 2.4.
 - `modify interface <interface_key> bundle [enabled | disabled]`

 Note: When a 2.x port is bundled, the LEDs for the 10GbE ports remain off. When a 2.x port is unbundled, the 40GbE LEDs remain off.

Configuring bundling for 40GbE QSFP+ interfaces using the Configuration utility

You can use the Configuration utility to configure bundling for the 40GbE QSFP+ interfaces on the platform. When you disable bundling, you can use the 40GbE ports as individual 10GbE ports.

1. On the Main tab, click Network > Interfaces.
 - This displays the list of available interfaces.
2. Click an interface name.
The properties screen for that interface opens.

3. From the **Bundled** list, select whether to enable or disable bundling.

4. Click **Update**.

About managing interfaces

You can use `tmsh` or the Configuration utility to configure platform interfaces.

Viewing the status of a specific interface using `tmsh`

You can use `tmsh` to view the status of a specific interface on a platform.

1. Open the Traffic Management Shell (`tmsh`).
   ```
   tmsh
   ```
2. Change to the network module.
   ```
   net
   ```
 The command prompt updates with the module name:
   ```
   user@bigip01(Active) (/Common) (tmos.net)#.
   ```
3. Display the current status of a specific interface.
   ```
   show interface <interface_key>
   ```
 This is an example of the output that you might see when you issue this command on interface 1.2:

   ```
   ------------------------------------------
   Net::Interface
   Name   Status  Bits Bits  Errs  Errs  Drops  Drops  Collis
   In     Out    In     Out   In    Out   In     Out   sions
   ------------------------------------------
   1.2    up 191.4K 0     0     0     374   0     0
   ```

Viewing the status of all interfaces using `tmsh`

You can use `tmsh` to view the status of all interfaces on the platform.

1. Open the Traffic Management Shell (`tmsh`).
   ```
   tmsh
   ```
2. Change to the network module.
   ```
   net
   ```
 The command prompt updates with the module name:
   ```
   user@bigip01(Active) (/Common) (tmos.net)#.
   ```
3. Display the current status of all interfaces.
   ```
   show interface
   ```
 This is an example of the output you might see when you issue this command:

   ```
   ------------------------------------------
   Net::Interface
   Name   Status  Bits Bits  Errs  Errs  Drops  Drops  Collis
   In     Out    In     Out   In    Out   In     Out   sions
   ------------------------------------------
   ```
Viewing the status of all interfaces using the Configuration utility

You can use the Configuration utility to view the status of all interfaces on the platform.

1. On the Main tab, click **Network > Interfaces**.
 This displays the list of available interfaces.
2. Click **Statistics**.
 The Statistics screen for all interfaces opens.

About interface media type and duplex mode

All interfaces on the system default to auto-negotiate speed and full duplex settings. We recommend that you also configure any network equipment that you plan to use with the system to auto-negotiate speed and duplex settings. If you connect the system to network devices with forced speed and duplex settings, you must force the speed and duplex settings of the system to match the settings of the other network device.

Important: If the system is attempting to auto-negotiate interface settings with an interface that has the speed and duplex settings forced (that is, auto-negotiation is disabled), you will experience severe performance degradation. This applies to 10GbE and 40GbE interfaces.

By default, the media type on interfaces is set to automatically detect speed and duplex settings, but you can specify a media type as well. Use the following syntax to set the media type:

```
tmsh modify net interface <interface_key> media <media_type> | auto
```

If the media type does not accept the duplex mode setting, a message appears. If media type is set to `auto`, or if the interface does not accept the duplex mode setting, the duplex setting is not saved to the `/config/bigip_base.conf` file.

Important: Auto-MDI/MDIX functionality is retained when you manually configure an interface to use specific speed and duplex settings. You can use either a straight-through cable or a crossover cable when media settings are forced, and you will be able to successfully link to either DTE or DCE devices.

Valid media types

These media types are valid for the `tmsh interface` command.

Note: This platform might not support all of the media type options that are available in `tmsh`.

<table>
<thead>
<tr>
<th>10BaseT half</th>
<th>100BaseTX full</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BaseT full</td>
<td>1000BaseLX full</td>
</tr>
<tr>
<td>10GBaseER full</td>
<td>1000BaseCX full</td>
</tr>
<tr>
<td>Media Type</td>
<td>Migration Type</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>10GBaseLR full</td>
<td>1000BaseT half</td>
</tr>
<tr>
<td>10GBaseSR full</td>
<td>1000BaseT full</td>
</tr>
<tr>
<td>10GBaseT full</td>
<td>1000BaseSX full</td>
</tr>
<tr>
<td>10SFP+Cu full</td>
<td>auto</td>
</tr>
<tr>
<td>40GBaseSR4 full</td>
<td>none</td>
</tr>
<tr>
<td>40GBaseLR4 full</td>
<td>no-phy</td>
</tr>
<tr>
<td>100BaseTX half</td>
<td></td>
</tr>
</tbody>
</table>

Viewing valid media types for an interface

You can use `tmsh` to view the valid media types for an interface.

Note: This platform might not support all of the media type options that are available in `tmsh`.

1. Open the Traffic Management Shell (tmsh).

 tmsh

2. Change to the network module.

 net

 The command prompt updates with the module name:

 user@bigip01(Active) (/Common) (tmos.net) #

3. Display the valid media types for a specific interface:

 show running-config interface <interface_key> media-capabilities

Important: In all Gigabit Ethernet modes, the only valid duplex mode is full duplex.

This is an example of the output that you might see when you issue this command on interface 1.3:

```
net interface 1.3 {
    media-capabilities {
        none
        auto
        10T-FD
        10T-HD
        100TX-FD
        100TX-HD
        1000T-FD
        1000T-HD
    }
}
```

Network interface LED behavior

The appearance and behavior of the network interface LEDs on the blades indicate network traffic activity, interface speed, and interface duplexity.

SFP+ port LED behavior

The appearance and behavior of the SFP+ optic interface LEDs indicate network traffic activity, interface speed, and interface duplexity.
The appearance and behavior of the 40GbE QSFP+ optic interface LEDs indicate network traffic activity, interface speed, and interface duplexity. There are two sets of LEDs for QSFP+ ports. One set is for operation in 40GbE, and the other set is for operation in 4 x 10GbE.

<table>
<thead>
<tr>
<th>Blade type</th>
<th>Link</th>
<th>Speed LED</th>
<th>Activity LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2100/B2150</td>
<td>No link</td>
<td>Not lit</td>
<td>Not lit</td>
</tr>
<tr>
<td>B2100/B2150</td>
<td>1Gbit/s, half duplex</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>B2100/B2150</td>
<td>1Gbit/s, full duplex</td>
<td>Yellow solid</td>
<td>Green (with traffic)</td>
</tr>
<tr>
<td>B2100/B2150</td>
<td>10Gbit/s, half duplex</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>B2100/B2150</td>
<td>10Gbit/s, full duplex</td>
<td>Green solid</td>
<td>Green (with traffic)</td>
</tr>
</tbody>
</table>

Transceiver module specifications

For current specification information for optical transceivers that are supported by this platform, see *F5® Platforms: Accessories*.

Cable pinout specifications

These pinouts describe how specified connectors are wired. Pinouts are helpful when building and testing connectors, cables, and adapters.

RJ-45 connector pinouts for the console port

This table lists the pinouts for the RJ-45 console (upper) port.

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RTS</td>
</tr>
<tr>
<td>2</td>
<td>DTR</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>RX</td>
</tr>
<tr>
<td>7</td>
<td>DSR (no connect)</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
</tbody>
</table>
RJ-45 connector pinouts for the failover port

This table lists the pinouts for the RJ-45 failover (lower) port.

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RTS</td>
</tr>
<tr>
<td>2</td>
<td>DTR</td>
</tr>
<tr>
<td>3</td>
<td>CTS</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>TX</td>
</tr>
<tr>
<td>8</td>
<td>RX</td>
</tr>
</tbody>
</table>

Always-On Management

The Always-On Management (AOM) subsystem enables you to manage the VIPRION® 2400 system remotely using serial console, even if the host is powered down. The AOM Command Menu operates independently of the BIG-IP® Traffic Management Operating System® (TMOS).

Note: The available functionality and options in AOM vary depending on the platform type.

AOM Command Menu options

The AOM Command Menu provides the Always-On Management options for the VIPRION® 2400 platform.

Note: The availability of menu options varies depending on the platform type.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Set baud rate</td>
<td>Configures the baud speed for connecting to AOM using the serial console. Select from these options:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 9600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 19200 (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 38400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 57600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 115200</td>
</tr>
<tr>
<td>C</td>
<td>Capture blade console</td>
<td>Captures the console of a specified blade (1-4).</td>
</tr>
<tr>
<td>I</td>
<td>Display platform information</td>
<td>Displays information about the AOM firmware and bootloader, chassis serial and part numbers, blade serial number, MAC address, and power status for the active console.</td>
</tr>
<tr>
<td>P</td>
<td>Power on/off blade</td>
<td>Powers a specified blade (1-4) on or off.</td>
</tr>
<tr>
<td>Letter</td>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>R</td>
<td>Reset blade</td>
<td>Resets a specified blade (1-4) with a hardware reset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Important: We do not recommend using this option under typical circumstances. It does not allow for graceful shutdown of the system.</td>
</tr>
<tr>
<td>E</td>
<td>Display error report</td>
<td>Displays a list of latched events/errors or out-of-range sensors.</td>
</tr>
<tr>
<td>Q</td>
<td>Quit menu and return to console</td>
<td>Exits the AOM Command Menu and returns to terminal emulation mode.</td>
</tr>
</tbody>
</table>

Accessing the AOM Command Menu from the serial console

You can access the AOM Command Menu through the host console shell (hostconsh) using the front panel serial console.

1. Connect to the system using the serial console.
2. Access the AOM Command Menu.

```
Esc (         

The AOM Command Menu displays.
```

Capturing a blade console

You can use the AOM Command Menu **Capture blade console** option to manage the other blades installed in the chassis.

1. Connect to the system using the serial console.
2. Open the AOM Command Menu.

```
Esc (         

3. Type `c` to select the **Capture blade console** menu option.
4. When prompted to select a blade, type the slot number (1-4) for the blade that you would like to manage.

**Note:** If the specified blade's console is already being redirected, you will be prompted to confirm that you still want to capture the specified blade's console.

A message similar to this example confirms that you are now viewing the console for the specified blade:

```
Connecting to blade in slot n...success.
```
Platform Installation

About installing the platform

After you have reviewed the hardware requirements and become familiar with the VIPRION® 2400 platform, you can install the chassis.

**Warning:** Due to the weight of the platform, at least two people are required to install this chassis into a rack. Failing to use two people can result in severe personal injury or equipment damage.

**Important:** Before you install this platform, review the environmental guidelines to make sure that you are installing and using the platform into a compatible rack and in the appropriate environment.

**Important:** F5® Networks strongly recommends that you install the chassis into a rack before you install any blades. This ensures that the weight of the chassis remains manageable as you install the chassis into a rack.

**Note:** After you install a blade, wait approximately one to two minutes before installing another to ensure that each blade has sufficient time to boot. When the Status LED is green, the blade is fully booted.

About general recommendations for rack mounting

Although not required, a 1U empty space between chassis makes it easier for you to remove the chassis from the rack in the event that the chassis requires service. A 1U space between chassis also provides additional cable routing options.

Leaving at least 100 mm of space from the front panel of the chassis to the rack front or rack door provides enough room for you to route the cables without excessive bending or insulation damage.

A shelf or similar device is required to support the chassis if only one person is installing the chassis.

**Warning:** Due to the weight of the platform, at least two people are required to install this chassis into a rack. Failing to use two people can result in severe personal injury or equipment damage.

**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

Hardware included with the AC-powered chassis

The VIPRION® 2200 Series AC-powered chassis should include all of the hardware components listed here.
Hardware included with blades

VPRION® B2000 Series blade should include all of the hardware components listed here.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RJ45 to DB9 console port cable (beige)</td>
</tr>
<tr>
<td>1</td>
<td>RJ45F to RJ45M rolled adapter (beige)</td>
</tr>
<tr>
<td>2</td>
<td>SFP+ 10G transceiver modules (B2100 and B2150 only)</td>
</tr>
<tr>
<td>1</td>
<td>Electrical static discharge (ESD) strap</td>
</tr>
</tbody>
</table>

Peripheral hardware requirements

For each platform, you might need to provide additional peripheral hardware. If you plan to remotely administer the system, it would be helpful to have a workstation already connected to the same subnet as the management interface.

<table>
<thead>
<tr>
<th>Type of hardware</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network hubs, switches, or connectors to connect to the platform network interface ports</td>
<td>You must provide networking devices that are compatible with the network interface ports on the platform. You can use either 40 Gigabit Ethernet, 10 Gigabit Ethernet, or 10/100/1000 Ethernet switches. You can use either 10/100/1000/10000-Gigabit or 40-Gigabit Ethernet switches.</td>
</tr>
</tbody>
</table>
| External USB CD/DVD drive or USB flash drive | You can use any USB-certified CD/DVD mass storage device or a USB flash drive for installing upgrades and for system recovery.  
  
  **Note:** External CD/DVD drives must be externally powered if they exceed the maximum current draw allowed by the USB specification (500mA). |
| Serial console | You can remotely manage the platform by connecting to a serial console terminal server through the console port.  
  
  **Important:** In the event that network access is impaired or not yet configured, the serial console might be the only way to access the chassis. |
### Unpacking the chassis

The VIPRION® 2400 chassis ships in a custom-designed package that protects the product during shipment and facilitates ease of removal when you are ready to install the chassis into a rack. Due to the weight of the chassis, there is a specific procedure that you must follow to ensure that you remove the chassis from its packaging safely and securely.

**Warning:** To ensure your safety and to prevent damage to the chassis, at least two people are required to remove this chassis from the shipping box.

1. If you have not already done so, open the top of the shipping box.

2. Remove the accessory box from the foam insert.
3. Remove the foam insert from the top of the chassis and remove the plastic wrap from the top of the chassis.

4. Use two people, and have each person grasp one handle and lift straight up to remove the chassis from the shipping box.

5. Carefully move the chassis to a flat surface and set it down until you are ready to install the chassis into a rack.

**About installing the chassis**

You should select a location for installing the VIPRION 2400 chassis that is easy to access for adding or removing power supplies, the fan tray, or blades. The location should also provide adequate ventilation to allow sufficient airflow through the platform. The platform employs a negative pressure fan system, which draws cold air in from the front of the chassis and exhausts hot air out the back of the chassis. After you have identified the intended location for the platform, you can install the chassis into the rack.

The VIPRION 2400 chassis comes pre-installed with mounting brackets and handles. The mounting brackets are attached to the front of the chassis, but you can move them to either the middle or back of the chassis, depending on the configuration of the rack. The handles make it easier to lift the chassis into position for rack mounting.
The chassis is designed for 19-inch racks. If you are installing into a wider rack, you will need to provide adapters. The four-point rack mounting rail kit will not work with 23-inch racks.

**Caution:** If you have not yet removed the chassis from the shipping box, F5® Networks highly recommends that you have at least two people remove the chassis from the box. This ensures your safety and prevents damage to the chassis.

**Caution:** Do not attempt to lift the enclosure by means of the fan tray module. In the process of doing so, the fan tray will pull free from the unit, with the potential of damaging the remaining chassis and fan tray.

**Important:** Before you install this platform, review the environmental guidelines to make sure that you are installing and using the platform into a compatible rack and in the appropriate environment.

**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

---

**About the two-point rack mounting brackets**

You can use the two-point rack mounting brackets if you are installing into a two-post rack.

The two-point rack mounting brackets are pre-installed on the chassis.

**Note:** You should use the two-point rack mounting brackets to install the platform only if you are installing into a two-post rack. For installing the platform into all other types of racks or cabinets, you should use the four-point rack mounting rail kit.

---

**Installing the chassis into a two-post rack**

Before you install this platform, review the environmental guidelines to make sure that you are installing and using the platform in the appropriate environment.
Important: If you are installing the chassis into a rack that does not have threaded holes (for example, a square hole rack), you need to install cage nuts before you can install the chassis. You should install a minimum of three cage nuts per side.

After you have installed the two-point rack mounting brackets onto the chassis, you can install the chassis directly into a two-post rack.

Warning: Due to the weight of the platform, at least two people are required to install this chassis into a rack. Failing to use two people can result in severe personal injury or equipment damage.

1. Using two or more people, lift the chassis to the appropriate location on the rack.
2. Secure the two-point rack mounting brackets to the rack using a minimum of three manufacturer-provided rack screws per side.
   The chassis must be fastened to the rack securely to provide adequate stability and prevent the chassis from falling out of the rack.
3. (Optional) You can remove the red handles from the top of the chassis.

After the chassis is installed into a rack, you can install the cable management system and supply power to the chassis.

About the four-point rack mounting rail kit

The four-point rack mounting rail kit helps ease installation and removal of the chassis from a rack. The rails snap into place in the rack, and no tools are required to install a platform using this kit. The rails are optimized for installation into square hole cabinets, but they can be installed in other cabinet styles, such as round hole cabinets, using the screws provided. The rails are easily converted to mount to either cabinet style.

The rail kit includes these parts:

- Two rail assemblies (left and right), which consist of an inner rail that you install onto the chassis and an outer rail that you install in the rack
- Eight #8-32 thumb screws
- Two cage nuts

Before you install this platform, review the environmental guidelines to make sure that you are installing and using the platform in the appropriate environment. You must also remove the pre-installed two-point rack mounting brackets.

Figure 9: Four-point rack mounting rail kit

For information about installing the platform using the four-point rack mounting rail kit, see the instruction guide provided by the manufacturer, which is included with the kit hardware.
Warning: Due to the weight of the platform, at least two people are required to install this chassis into a rack. Failing to use two people can result in severe personal injury or equipment damage.

Important: The maximum rack mount depth supported by the four-point rack mounting rails is 38 inches (96.52 cm). Using the rails in a rack deeper than this might cause the brackets to be overextended and cause a structural failure.

After the chassis is installed into a rack, you can install the cable management system, and then supply power to the chassis. Optionally, you can remove the red handles from the top of the chassis.

Installing the cable management system

After you have installed and secured the chassis to a rack, you can install the cable management system.

1. Locate the cable routing brackets and covers included with the chassis.
   The brackets and covers are in an accessory box that is included with the chassis.

2. Attach the cable routing brackets to the appropriate location on the chassis (front, middle, or rear) by tightening the captive screws clockwise until they are completely secured.
Note: You attach the cable management covers to the brackets after you connect the power supply cables to the power supplies and connect all other cables.

About grounding the chassis

You should ground the platform after you install it in a rack. The chassis grounding stud is located behind the nameplate on the front of the chassis.

Do not secure multiple bonding or grounding connectors with the same bolt. The grounding connectors do not need to be removed to perform service or installation procedures. You can connect other bonding or grounding conductors to a grounding connector provided a reliable bond between the connector and the equipment is not disturbed during installation, service, or maintenance of the platform.

Important: All copper grounding cable compression-type terminal lugs used for grounding must meet all appropriate safety standards.

Note: The VIPRION 2400 platform must be grounded to a common bonding network (CBN).
Connecting the chassis grounding stud to the ground terminal

You will need these tools to properly ground the chassis:

- Crimping tool
- Single ring ground terminal lug
- One 2 AWG copper wire long enough to reach from the chassis to the common bonding network (CBN)

After the chassis is installed in the rack and before you provide power to the system, you need to connect the grounding hardware.

1. Use a #2 Philips screwdriver to remove the name plate located on the front of the chassis to expose the chassis grounding stud.
2. Remove the M6 Keps nut from the stud.
3. Use a crimping tool to crimp the 10 AWG copper ground wire to a single ring ground terminal lug.
4. Attach the single ring ground terminal lug to the chassis grounding stud.
5. Reinstall the M6 Keps nut to the grounding stud.
   Use 16 to 18 inch-pounds (1.8 to 2.0 Newton-meters) of torque on the M6 Keps nut.
6. Connect the ground wire to a common bonding network (CBN).
7. Use a #2 Philips screwdriver to reinstall the name plate.

About powering the VIPRION 2400 AC platform

The AC platform ships with two power cords that you must use with the installed power supplies to power the chassis.

Important: Do not install blades or disconnect blades from the chassis before supplying power to the chassis.

Important: Do not use any power cords other than those specifically designed for the VIPRION 2400 platform.
Caution: The power supply cord is used as the main disconnect device, ensure that the socket-outlet is located or installed near the equipment and is easily accessible.

Attention: Le cordon d'alimentation est utilisé comme interrupteur général. La prise de courant doit être située ou installée à proximité de l'équipement et être facile d'accès.

Caution: This unit has more than one power supply cord. Disconnect two power supply cords before servicing to avoid electric shock.

Attention: Cet appareil comporte plus d'un cordon d'alimentation. Afin de prévenir les chocs électriques, débrancher les deux cordons d'alimentation avant de faire le dépannage.

Powering the AC platform

You can connect the power cables to the platform after you install the chassis into a rack.

1. On the front of the chassis, locate the power supplies.
2. Attach a power cord to the outlet and press firmly until it is fully seated.
3. Plug the power cord into an approved power source.
4. Repeat this process for each power supply in the chassis.
5. Guide the power cables through the cable routing brackets.
6. Attach the cable management covers to the cable routing brackets by using a Phillips screwdriver, if necessary.
About powering the VIPRION 2400 DC platform

If you ordered DC power as a factory option, your VIPRION® 2400 platform comes pre-installed with DC power supplies.

Before you power this VIPRION DC platform, see Guidelines for DC-powered equipment and Guidelines for VIPRION DC platform installation.

Connecting DC power to the platform

**Important:** Be sure that the DC power source is off and the ground lug is connected to the ground terminal before you connect the platform to the DC power source.

After you have assembled the DC input connector, you can connect the platform to the DC power source. When you connect the DC power source, you should also follow the safety requirements defined for your network operations center (NOC).

1. Plug the assembled DC input connector into the outlet of the DC power supply and press firmly until it is fully seated.
   If the connector does not readily insert into the power supply, you might need to manually align it.

2. Secure the DC input connector to the power supply by tightening the captive screw clockwise until it is secured to the power supply completely.
   **Note:** The top screw secures the DC input connector to the power supply, and the bottom screw secures the power supply to the chassis.

3. Connect the DC power cord to an approved power source.
   For more information about voltage input requirements, see Chassis hardware specifications.

4. Repeat this process for each power supply in the chassis.

5. Guide the power cables through the cable routing brackets.

6. Attach the cable management covers to the cable routing brackets by using a #2 Phillips screwdriver, if necessary.

7. Power on the DC power source.
   The system begins to boot.
About installing blades

The VIPRION® 2400 chassis supports up to four B2000 Series blades.

Note: F5® Networks does not support mixing blade models in a chassis.

When you initially receive the platform, the slots that can contain these blades are filled with blanks. Blanks protect the unit from dust and other particles when a slot is not in use. In addition to protecting the chassis from dust, a blank must be installed in each empty slot to ensure proper airflow and electromagnetic interference (EMI) performance in the chassis. To add a new blade, you first remove the blank from the corresponding slot and then insert the blade. Be sure to keep the blanks in case you need to change the blade configuration later. You should not operate the chassis for an extended period of time without all slots populated.

Important: This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

Note: Ensure that you supply power to the chassis prior to installing any blades.

Note: In the four-slot VIPRION 2000 Series chassis, you should install blades into the chassis in this order:
- Upper left slot (1)
- Lower left slot (2)
- Upper right slot (3)
- Lower right slot (4)

Note: After you install a blade, wait approximately one to two minutes before installing another to ensure that each blade has sufficient time to boot. When the Status LED is green, the blade is fully booted.

Removing a blank

If a blank is installed in the slot where you want to install a blade, you must remove it. If the slot does not contain a blank, you can skip this procedure.

1. Select the slot in which you want to insert the blade.
2. Loosen the captive screws on either side of the blank with a #2 Phillips screwdriver, if necessary.
3. Grasp the two captive screws on the front of the blank and pull straight out to remove the blank from the chassis.
Removing a blade

You can remove a blade from the chassis without powering down the system.

1. Identify the blade that you would like to remove from the chassis.
2. Halt the blade:
   a) Connect to the blade using the serial console.
   b) Halt the blade.
      
      halt
      
      The blade is halted when the system displays: halted.

3. Disconnect all cables and remove any optical modules.
4. Loosen the captive screws on either side of the blade with an appropriate screwdriver, if necessary.
5. Grasp the two latches on the front of the blade and pull toward you.

6. Fully extend the latches on both sides of the blade and pull out toward you to remove the blade.

If you are not going to insert a replacement blade, you must install a blank in the open slot.

Installing a blade

Check if a blank is in the slot in which you want to install a blade. If so, you must first remove it.
You can install a blade in the chassis without powering down the system.

1. Fully extend the latches, located on each side of the blade, into the open position.

2. Carefully lift the blade and insert it into the empty slot.

3. Slide the blade into the slot until it is fully seated and the latches engage.

4. Tighten the captive screws clockwise until they are secured to the chassis completely.

**Important:** The captive screws must be tightened properly to ensure that the blade has a strong connection to the chassis.

5. Repeat this process with each blade until all blades are secured in the chassis.

**Note:** After you install a blade, wait approximately one to two minutes before installing another to ensure that each blade has sufficient time to boot. When the Status LED is green, the blade is fully booted.
Connecting the cables and other hardware

After you have installed the chassis into the rack, connect the cables and other hardware.

**Note:** Serial (hard-wired) failover is not currently supported between VIPRION chassis. If you would like to set up device service clustering (DSC®), previously known as a redundant system configuration, you must configure network failover. For more information, see BIG-IP® Device Service Clustering: Administration.

1. Connect an Ethernet cable to the MGMT port if you are using the default network configured on the management interface.
2. Connect the platform to a serial console server.

**Important:** In the event that network access is impaired or not yet configured, the serial console might be the only way to access the chassis. F5® strongly recommends that you perform all installations and upgrades using the serial console, as these procedures require reboots, in which network connectivity is lost temporarily.

- Connect the serial console cable supplied by F5 to the CONSOLE port.

**Note:** The default serial port settings are 19200, n, 8, 1.

- Connect the RJ45F to RJ45M rolled serial adapter to the CONSOLE port if you are connecting the system to a serial console server with a standard CAT5 cable, and then connect the CAT5 cable to the adapter. The adapter provides the appropriate pinout connection to your equipment.

![](image1.png)

**Figure 12:** The RJ45F to RJ45M rolled serial (pass-through) adapter

3. If you have not already done so, power on the chassis.

You can now assign a cluster IP address to the system, and then license and provision the software.

Optionally, you should run the latest version of the qkview utility. This utility collects configuration and diagnostic information about your system into a single file that you can provide to F5 Support to aid in troubleshooting. For more information, see [http://support.f5.com/kb/en-us/solutions/public/1000/800/sol1858.html](http://support.f5.com/kb/en-us/solutions/public/1000/800/sol1858.html).
About cluster management

The management IP address for a cluster is known as the cluster IP address. The cluster IP address enables you to access the browser-based Configuration utility to configure other aspects of the product, such as the product license, VLANs, trunks, and so on. Connecting to the cluster IP address connects you to the primary blade in the system.

With VIPRION® platforms, you assign cluster IP addresses on a per-cluster basis. Initially, all blades installed in the chassis belong to a single default cluster. During the initial setup, you only need to assign a single cluster IP address.

A blade within a cluster is known as a cluster member. You can assign a management IP address to each cluster member.

You can manage clusters using these methods:

- USB LCD module
- config utility
- tmsh commands

Configuring the cluster IP address from the LCD

You can use the USB LCD module to configure the cluster IP address. The options for cluster and blade management are located in the Cluster menu item under the System menu.

Note: The USB LCD module is an optional device that is not included with the platform by default. It works only with VIPRION® 2000 Series platforms.

Note: When using the LCD to manage clusters, be sure to use the Commit menu option after changing each setting. Alternatively, you can change all cluster-related settings and use the Commit option to save all settings at once.

1. Press the X button to access the LCD menus.
2. Use the arrow keys to select System and press the Check button.
3. Use the arrow keys to select Cluster and press the Check button.
4. Use the arrow keys to select Cluster Mgmt and press the Check button.
5. Use the arrow keys to select Cluster IP and press the Check button.
   The LCD panel shows the current IP address of the cluster. The default value is 192.168.1.246.
6. Use the arrow keys to configure the IP address of the cluster.
7. Press the X button until you return to the Cluster Mgmt menu.
8. Use the arrow keys to select Commit and press the Check button.

The system saves the new IP address for the cluster. You can now access the browser-based Configuration utility using the cluster IP address you assigned.

Configuring the cluster IP subnet mask from the LCD

You can use the LCD module to configure the cluster IP subnet mask.
1. Press the X button to access the LCD menus.
2. Use the arrow keys to select **System** and press the Check button.
3. Use the arrow keys to select **Cluster** and press the Check button.
4. Use the arrow keys to select **Cluster Mgmt** and press the Check button.
5. Use the arrow keys to select **Cluster IP Mask** and press the Check button.

   The LCD shows the current subnet mask address of the cluster. The default value is **255.255.255.0**.
6. Use the arrow keys to configure the subnet mask of the cluster.
7. Press the X button until you return to the **Cluster Mgmt** menu.
8. Use the arrow keys to select **Commit** and press the Check button.

The system saves the new subnet mask for the cluster.

### Configuring the default gateway IP address for the cluster from the LCD

You can use the LCD module to configure the default gateway IP address for the cluster.

1. Press the X button to access the LCD menus.
2. Use the arrow keys to select **System** and press the Check button.
3. Use the arrow keys to select **Cluster** and press the Check button.
4. Use the arrow keys to select **Cluster Mgmt** and press the Check button.
5. Use the arrow keys to select **Gateway** and press the Check button.

   The LCD shows the current gateway IP address of the cluster. The default value is **0.0.0.0**.
6. Use the arrow keys to configure the gateway IP address of the cluster.
7. Press the X button until you return to the **Cluster Mgmt** menu.
8. Use the arrow keys to select **Commit** and press the Check button.

The system saves the new default gateway IP address for the cluster.

### Configuring the management IP address of a cluster member from the LCD

You can use the LCD module to configure the management IP address of a cluster member.

**Important:** When you configure an IP address for a blade, that IP address corresponds to the slot in which the blade resides. If you replace that blade with another, the new blade automatically receives the previously-configured management IP address, provided that a second operating blade is installed in the system. At least one operational blade is required at all time to preserve the existing configuration data.

1. Press the X button to access the LCD menus.
2. Use the arrow keys to select **System** and press the Check button.
3. Use the arrow keys to select **Cluster** and press the Check button.
4. Use the arrow keys to select **Cluster Mbrs** and press the Check button.
5. Use the arrow keys to select the appropriate blade (**Blade [1-4] Mgmt**) and press the Check button.
6. Use the arrow keys to select **Blade Mgmt IP** and press the Check button.

   The LCD shows the current IP address of the blade. The default value is **0.0.0.0**.
7. Use the arrow keys to configure the IP address of the blade.
8. Press the X button until you return to the **Blade [1-4] Mgmt** menu.
9. Use the arrow keys to select **Commit** and press the Check button.
The system saves the new IP address for the blade.

**Configuring the cluster IP address using the config utility**

You can configure the cluster IP address using the `config` utility after you connect a blade to a serial console.

1. Connect to the system using the serial console.
2. Start the `config` utility.
   ```
 config
   ```
   The `config` utility displays.
3. Follow the prompts to configure the cluster IP address, subnet mask, and gateway address for the management port.

The system saves the new IP address, subnet mask, and gateway address for the cluster. You can now access the browser-based Configuration utility using the cluster IP address you assigned.

**Configuring the cluster IP address using tmsh**

You can configure the cluster IP address using `tmsh` after you connect a blade to a serial console.

1. Connect to the system using the serial console.
2. Set the cluster IP address and subnet mask.
   ```
 tmsh modify sys cluster default address <ip_address/mask>
   ```
   Example: `tmsh modify sys cluster default address 192.168.217.44/24`
3. Set the default gateway for the cluster.
   ```
 tmsh modify sys management-route default gateway <gateway_ip>
   ```
   Example: `tmsh modify sys management-route default gateway 172.20.80.254`
4. Write the running configuration to the stored configuration files.
   ```
 tmsh sys save [base-config | config]
   ```

The system saves the new IP address, subnet mask, and gateway address for the cluster. You can now access the browser-based Configuration utility using the cluster IP address you assigned.

**Licensing the platform**

Once the cluster IP address is configured for the platform, you can use the browser-based Configuration utility to license the appropriate BIG-IP software.

1. Using a Web browser, navigate to the cluster IP address that you assigned to the VPRION system.
   Use this format, where `<cluster_ip_address>` is the cluster IP address you assigned:
   ```
 https://<cluster_ip_address>
   ```
2. Type `admin` as the user name and `admin` as the password.
   If this is the first time you have accessed the Configuration utility, the first screen you see is the License screen.
3. Follow the instructions in the Configuration utility to license the platform.
For more information about licensing the system, click the Help tab.

Verifying blade availability

At this point, you have installed the VIPRION platform, powered it, installed blades, assigned a cluster IP address to the system, and licensed it for use. Next, you need to ensure that the blades are recognized by the software and available for processing network traffic.

1. Using a Web browser, navigate to the cluster IP address that you have assigned to the VIPRION platform. The Configuration utility opens.

2. On the Main tab, click System > Clusters. The Clusters screen opens.

3. In the Cluster Members area, verify that all blades listed have a green status icon in the Status column. The green circle icon indicates that the cluster member is available.

Now you have installed a VIPRION platform successfully and prepared it for use on your network. The next steps involve further configuration of the platform by adding the trunks, VLANs, and self IP addresses that are necessary for the system to manage your network traffic effectively.
About maintaining the platform

The VIPRION® 2400 platform contains several components that you can replace individually without exchanging the entire system. This platform contains these replaceable components:

- AC power supply
- DC power supply
- Fan tray
- Storage drive assembly

*Note: Applies only to the B2100 blade with hard disk drive (HDD).*

- Blades

About AC power supplies

The VIPRION® 2400 platform supports one to two hot swappable AC power supplies. The power supplies are auto-ranging from 100-127VAC to 200-240VAC input.

The platform supports power redundancy, which ensures that the system is unaffected if a single power supply fails in a system containing more than one power supply.

*Caution: Running without all power supplies installed in the platform can affect cooling and electromagnetic interference (EMI). If a power supply fails, you can leave it installed in the chassis and remove the power cord until you receive a replacement supply; the system, however, will continue to log errors.*

*Caution: The power socket outlet should be installed near the equipment and easily accessible.*
**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

**Note:** Depending on the model and revision type of the power supply, you might need either a Phillips or a slotted screwdriver to replace the power supply.

## Removing a power supply

Before you can replace a power supply, you must remove the existing supply from the chassis, if one is installed.

**Important:** If the chassis has at least one blade operating and you would like uninterrupted operation, make sure that one of the power supplies remains installed and operational during the replacement process.

1. On the front of the chassis, locate the power supplies.
2. Disconnect power from the power supply that you would like to remove.

   **Note:** When you face the front of the chassis, power supply 1 is on the left, and power supply 2 is on the right.

3. Loosen the captive screw on the power supply eject lever with a #2 Phillips screwdriver, if necessary.
4. Raise the power supply eject lever.

5. Grasp the lever and pull straight toward you to eject the power supply from the power supply bay.

## Installing a power supply

If a power supply is already installed in the bay where you are installing the replacement supply, disconnect power from the power supply prior to removing the supply. When you face the front of the chassis, power supply 1 is on the left, and power supply 2 is on the right.

You can add or replace a power supply as part of routine maintenance or in the event of a power supply failure.
**Important:** If the chassis has at least one blade operating and you would like uninterrupted operation, make sure that one of the power supplies is installed and operating during the replacement process.

1. Remove the existing supply, if one is installed.
2. Slide the new power supply into the empty power supply bay.
3. Lower the power supply eject lever to fully seat the power supply in its bay.
4. Secure the power supply in its bay by tightening the screw in the middle of the power supply eject lever.

*Note:* The screw that holds the ejector handle in place is captive and cannot be removed from the assembly.

After you install the power supply, you can apply power to it.

### About DC power supplies

The VIPRION® 2400 platform supports up to two hot swappable DC power supplies.

The platform supports power redundancy, which ensures that the system is unaffected if a single power supply fails in a system containing more than one power supply. The DC power supply includes a DC input connector, which is composed of a DC lock assembly and a DC plug. Connect the wires from the DC power source to the DC input connector, and then insert the connector into the DC power supply.

The DC power supply does not have an on/off switch. You can control the power from the rack switch or the DC power source.

*Caution:* Before installing a DC power supply, be sure that the DC power source for the rack is powered off.

*Caution:* Running without all power supplies installed in the platform can affect cooling and electromagnetic interference (EMI). If a power supply fails, you can leave it installed in the chassis and remove power from the power supply until you receive a replacement supply; the system, however, will continue to log errors.

*Caution:* Before you begin to work with one of these platforms, refer to the DC-powered equipment environmental warnings for this platform and review any safety requirements for the facilities where the DC-powered platforms will be installed.

**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

**Important:** The platform must be installed in a RESTRICTED ACCESS LOCATION, such as a central office or customer premises environment.

*Note:* All copper grounding cable must meet all appropriate safety standards and local electric codes.

*Note:* You should coat bare conductors with an appropriate antioxidant compound before you make crimp connections. You should bring all unplated connectors, braided strap, and bus bars to a bright finish and then coat them with an antioxidant before you connect them.
Removing a power supply

Before you can replace a power supply, you must remove the existing supply from the chassis, if one is installed.

**Important:** If the chassis has at least one blade operating and you would like uninterrupted operation, make sure that one of the power supplies remains installed and operational during the replacement process.

1. On the front of the chassis, locate the power supplies.
2. Disconnect power from the power supply that you would like to remove.

**Note:** When you face the front of the chassis, power supply 1 is on the left, and power supply 2 is on the right.

3. Loosen the captive screw on the power supply eject lever with a #2 Phillips screwdriver, if necessary.
4. Raise the power supply eject lever.

5. Grasp the lever and pull straight toward you to eject the power supply from the power supply bay.

Installing a DC power supply

If a power supply is already installed in the bay where you are installing the replacement supply, disconnect the DC power for the power supply prior to removing the supply. When you face the front of the chassis, power supply 1 is on the left, and power supply 2 is on the right.

You can add or replace a DC power supply as part of routine maintenance or in the event of a power supply failure.

**Important:** If the chassis has at least one blade operating and you would like uninterrupted operation, make sure that one of the power supplies remains installed and operational during the replacement process.
1. Remove the existing supply, if one is installed.
2. Slide the new DC power supply into the empty power supply bay.

3. Lower the power supply eject lever to fully seat the power supply in its bay.
4. Secure the power supply by tightening the captive screw on the power supply eject lever.

**Note:** The screw that holds the ejector handle in place is captive and cannot be removed from the assembly.

---

**Wiring the DC connector**

You will need these components to wire the DC power supply:

- Wire stripping tool
- Two 6 AWG copper wires long enough to reach from the platform to the DC power source

The DC power supply for the VIPRION® 2400 platform includes the components needed to assemble the DC connector: a DC lock assembly and a DC plug.

1. Use the wire stripping tool to remove 3/8 inch (9.56 mm) of insulation from the end of each 6 AWG wire.
**Important:** Be sure to remove the appropriate amount of insulation from each wire. If you remove too much insulation, exposed wire protruding from the DC plug can create an electrical hazard. If you do not remove enough insulation, the wire might not make proper contact with the terminal.

2. Thread the exposed conductor ends of the wires through the opening in the lock assembly.

3. Insert each exposed conductor into the appropriate connector on the DC plug.
   Insert a small flat-head screwdriver into the corresponding release hole on the DC plug to allow the conductor to be freely inserted into the contact opening.

4. Snap the plug into the lock assembly.

---

### Connecting DC power to the platform

**Important:** Be sure that the DC power source is off and the ground lug is connected to the ground terminal before you connect the platform to the DC power source.

After you have assembled the DC input connector, you can connect the platform to the DC power source. When you connect the DC power source, you should also follow the safety requirements defined for your network operations center (NOC).
1. Plug the assembled DC input connector into the outlet of the DC power supply and press firmly until it is fully seated.
   If the connector does not readily insert into the power supply, you might need to manually align it.

2. Secure the DC input connector to the power supply by tightening the captive screw clockwise until it is secured to the power supply completely.
   
   **Note:** The top screw secures the DC input connector to the power supply, and the bottom screw secures the power supply to the chassis.

3. Connect the DC power cord to an approved power source.
   For more information about voltage input requirements, see *Chassis hardware specifications*.

4. Repeat this process for each power supply in the chassis.

5. Guide the power cables through the cable routing brackets.

6. Attach the cable management covers to the cable routing brackets by using a #2 Phillips screwdriver, if necessary.

7. Power on the DC power source.
   The system begins to boot.

---

**About the fan tray**

The VIPRION® 2400 platform has a removable fan tray that is designed to maintain airflow throughout the chassis. You can change or replace the fan tray as part of the routine maintenance of the unit, or in the event of a fan failure. The fans in the fan tray run constantly while the unit is on. Over time, the fans can wear out, requiring you to replace the fan tray.

**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.
Replacing the fan tray

You can replace the fan tray as part of routine maintenance or in the event of a fan tray failure. You do not need special tools to replace the fan tray. You do not need to power down the unit when replacing the fan tray; however, do not leave the unit operating without a fan tray for longer than 30 seconds.

**Caution:** Operating the unit without a fan tray for more than 30 seconds might cause permanent damage.

1. Stand at the back of the platform and locate the ejector handles on the left and right sides of the fan tray.
2. Extend the fan tray handles and remove the fan tray from the chassis by pulling straight toward you.

3. Place the new fan tray into the fan tray bay.
4. Push the fan tray into the chassis until it is seated firmly in the fan tray bay.
   When seated, the fan tray automatically powers up and begins circulating air through the chassis.

**Important:** Use only the fan tray handles to seat the fan tray in the chassis. Using the edges of the fan tray could result in pinched fingers.

About the drive assembly

By default, VIPRION® B2000 Series blades contain one drive assembly that contains either one hard disk drive (HDD) or one solid-state drive (SSD).

**Important:** F5® supports replacement of hard disk drives (HDD) only.
Replacing a hard disk drive assembly

You can change or replace a hard drive assembly that contains a hard disk drive (HDD) in a VIPRION® B2000 Series blade as part of the routine maintenance of the unit or in the event of a drive failure.

1. Remove the blade from the chassis that contains the drive assembly to be replaced.
2. Remove the existing drive assembly, if one is installed:
   a) Loosen the drive assembly screw by turning it counterclockwise with a Phillips screwdriver, if necessary.
   
   **Note:** The screw that holds the ejector handle in place is captive and cannot be removed from the assembly.
   
   b) Grasp the screw, lift the drive assembly slightly, and then rock the connector gently from side-to-side as you pull to remove the hard drive assembly from the blade.

3. Slide the new drive assembly into the bay.  
   Be sure to place the bottom of the assembly under the cable connectors.

4. Tighten the screw into place.
The drive assembly is connected to the system when you tighten the screw completely.

5. Place the blade back into the chassis.
Environmental Guidelines

General environmental guidelines

The VIPRION® 2400 platform is an industrial network appliance that is designed to be mounted in a standard 19-inch EIA rack. Follow these guidelines to adhere to safety precautions:

- Install the rack according to the manufacturer's instructions and check the rack for stability before placing equipment in it.
- Build and position the rack so that once you install the platform, the power supply and the vents on both the front and back of the unit remain unobstructed. The platform must have adequate ventilation around the unit at all times.
- Do not allow the air temperature in the room to exceed 104°F (40°C).
- Do not plug the unit into a branch circuit shared by more electronic equipment than the circuit is designed to manage safely at one time.

**Important:** This product is sensitive to electrostatic discharge (ESD). F5® Networks recommends that you use proper ESD grounding procedures and equipment when you install or maintain the unit.

**Caution:** Customers should not attempt to replace batteries. There is a risk of explosion if a battery is replaced with an incorrect type. Field technicians should dispose of used batteries according to the instructions.

**Attention:** Il y a risque d'explosion si la batterie est remplacée par une batterie de type incorrect. Mettre au rebut les batteries usagées conformément aux instructions.
Guidelines for the AC-powered platform

An AC-powered installation must meet these requirements:

- Install the unit using a 20 amp external branch circuit protection device.
- Normally, one power feed is used for each individual power supply.

**Important:** The platform must be installed in a RESTRICTED ACCESS LOCATION, such as a central office or customer premises environment.

**Note:** The power cables included with this unit are for exclusive use with this unit and should not be used with other electrical appliances.

**Note:** These guidelines apply to STATIONARY PLUGGABLE EQUIPMENT TYPE A with simultaneous multiple connections to the AC MAINS SUPPLY:

- The building installation shall provide a means for connection to protective earth; and
- The equipment is to be connected to that means; and
- A SERVICE PERSON shall check whether or not the socket-outlet from which the equipment is to be powered provides a connection to the building protective earth. If not, the SERVICE PERSON shall arrange for the installation of a PROTECTIVE EARTHING CONDUCTOR from the separate protective earthing terminal to the protective earth wire in the building.

**Note:** High leakage current. Earth connection essential before connecting supply.

Guidelines for the DC-powered platform

A VIPRION® DC-powered installation must meet these requirements:

- Install the unit using a 50 amp external branch circuit protection device.
- One power feed must be used for each individual power supply.
- For permanently connected equipment, incorporate a readily accessible disconnect in the fixed wiring.
- Use only copper conductors.
• The DC MAINS powering the equipment shall be connected to protective earth.

**Important:** The platform must be installed in a RESTRICTED ACCESS LOCATION, such as a central office or customer premises environment.

**Note:** The power supply for the VIPRION® DC platform does not have an on/off switch. You control the power from the DC power source.

**Note:** You must use copper wire for the ground wire and all lead wires.

**Note:** You should coat bare conductors with an appropriate antioxidant compound before you make crimp connections. You should bring all unplated connectors, braided strap, and bus bars to a bright finish, and then coat them with an antioxidant before you connect them.

---

**Platform airflow diagram**

When you install the platform into a rack, it is important to understand the unit’s airflow direction so that you can ensure proper cooling.

The platform employs a negative pressure fan system, which draws cold air in from the front of the chassis and exhausts hot air out the back of the chassis.
Environmental Guidelines

Figure 16: Airflow in the VIPRION 2400 platform
Platform Specifications

General specifications for system features

This table lists general specifications for the VIPRION® 2400 platform.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transceiver modules hot swap</td>
<td>Support for hot swap of SFP, SFP+, and QSFP+ transceiver modules</td>
</tr>
<tr>
<td>Dynamic routing protocols</td>
<td>BFD, BGP4, IS-IS, OSPFv2, OSPFv3, RIPv1/RIPv2, RIPng</td>
</tr>
<tr>
<td>Jumbo frames</td>
<td>Support for maximum Ethernet frame size of 9216 bytes and MTU of 9128 bytes</td>
</tr>
<tr>
<td>Virtual Clustered Multiprocessing™ (vCMP™)</td>
<td>Supports provisioning and managing multiple, hosted instances of the BIG-IP software on a single hardware device</td>
</tr>
</tbody>
</table>

Important: Specifications are subject to change without notification.

Blade hardware specifications

This table lists hardware specifications for VIPRION B2000 Series blades.

<table>
<thead>
<tr>
<th>Specification</th>
<th>B2100</th>
<th>B2150</th>
<th>B2250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Proprietary to fit F5 Networks chassis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>9.5 pounds (4.3 kg)</td>
<td>9.5 pounds (4.3 kg)</td>
<td>10.0 pounds (4.5 kg)</td>
</tr>
<tr>
<td>Processor</td>
<td>1 x Quad-Core Intel® Xeon® processor (total 8 hyperthreaded logical processor cores)</td>
<td>1 x Quad-Core Intel® Xeon® processor (total 8 hyperthreaded logical processor cores)</td>
<td>1 x 10-Core Intel® Xeon® processor (total 20 hyperthreaded logical processor cores)</td>
</tr>
<tr>
<td>Communication interfaces</td>
<td>8 x 1GbE/10GbE SFP+ fiber ports</td>
<td>8 x 1GbE/10GbE SFP+ fiber ports</td>
<td>4 x 40GbE QSFP+ fiber ports</td>
</tr>
<tr>
<td>Hard drive capacity</td>
<td>1 x 300 GB hard disk drive (HDD)</td>
<td>1 x 400 GB solid-state drive (SSD)</td>
<td>1 x 800 GB SSD</td>
</tr>
<tr>
<td>RAM</td>
<td>16 GB</td>
<td>32 GB</td>
<td>64 GB</td>
</tr>
</tbody>
</table>

Important: Specifications are subject to change without notification.
Chassis hardware specifications

This table lists hardware specifications for the VIPRION® 2400 chassis.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>H: 6.89 inches (17.5 cm) x W: 17.64 inches (44.8 cm) x D: 21.18 inches (53.8 cm) rack-mount chassis</td>
</tr>
<tr>
<td>Weight</td>
<td>Fully-loaded system (4 blades, 2 power supplies, 1 fan tray): 95.5-97.5 pounds (43.3-44.2 kg) Half-loaded system (2 blades, 2 power supplies, 2 blank line cards, 1 fan tray): 77.5-78.5 pounds (35.2-35.6 kg) Empty chassis (3 blank line cards, 0 power supplies, 0 blades, 1 fan tray): 42.5 pounds (19.3 kg) Power supply: 7.5 pounds (3.4 kg) B2100 blade: 9.5 pounds (4.3 kg) B2150 blade: 9.5 pounds (4.3 kg) B2250 blade: 10.0 pounds (4.5 kg) Blank line card: 0.5 pounds (0.2 kg) Fan tray: 6.5 pounds (2.9 kg)</td>
</tr>
<tr>
<td>Processor</td>
<td>See blade specifications</td>
</tr>
<tr>
<td>Hard drive capacity</td>
<td>See blade specifications</td>
</tr>
<tr>
<td>RAM</td>
<td>See blade specifications</td>
</tr>
<tr>
<td>AC power input</td>
<td>2 x 100-127 VAC (1200W)/200-240 VAC (1400W) auto-ranging</td>
</tr>
<tr>
<td>requirements</td>
<td>17A per input line (max)</td>
</tr>
<tr>
<td>DC power supply</td>
<td>1 to 2 x 1400W 44 to 65 VDC</td>
</tr>
<tr>
<td></td>
<td>44A per input (max)</td>
</tr>
</tbody>
</table>

Important: Specifications are subject to change without notification.

Chassis environmental operating specifications

This table lists environmental operating specifications for the VIPRION® chassis.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational temperature</td>
<td>32° to 104°F (0° to 40°C)</td>
</tr>
<tr>
<td>Operational relative humidity</td>
<td>5 to 85% at 104°F (40°C)</td>
</tr>
<tr>
<td>Non-operational temperature</td>
<td>-40 to 158°F (-40 to 70°C) non-condensing</td>
</tr>
<tr>
<td>Non-operational humidity</td>
<td>5 to 95% at 40°C non-condensing</td>
</tr>
</tbody>
</table>

Important: Specifications are subject to change without notification.
About AC power requirements

When working with an AC-powered VIPRION® platform, it is important to understand the AC power options and requirements.

About AC power cables

The power cable supplied with the hardware is a 220V high-line input cable. This type of cable requires a NEMA 6-20R wall outlet or a region-specific equivalent. Region-specific power cables are available from F5® Networks.

Note: The power cables included with this unit are for exclusive use with this unit and should not be used with other electrical appliances.

AC power redundancy provisioning

This VIPRION® platform supports up to two AC power supplies. The power supplies are auto-ranging 100-127VAC (low-line) to 200-240VAC (high-line) input, and can supply 1200W output power at low-line and 1400W output power at high-line. The fan tray is provisioned to draw up to 100W. Each slot is provisioned to draw up to 275W, if needed; therefore, one power supply with low-line input can support one, two, three, or four B2000 Series blades, plus the fan tray with no redundancy. The same supply with high-line input can also support up to four B2000 Series blades. If redundancy is desired in any configuration, simply add the second power supply at either low- or high-line input. This table shows some of the possible blade and power supply redundancy configurations.

<table>
<thead>
<tr>
<th>Blade type</th>
<th>Blade quantity</th>
<th>Supplies (low-line)</th>
<th>Supplies (high-line)</th>
<th>Supplies (low-line)</th>
<th>Supplies (high-line)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2100</td>
<td>1 (350W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>2 (600W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>3 (850W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>4 (1100W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td>B2150</td>
<td>1 (350W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>2 (600W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>3 (850W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>4 (1100W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td>Blade type</td>
<td>Blade quantity</td>
<td>Supplies (low-line)</td>
<td>Supplies (high-line)</td>
<td>Supplies (low-line)</td>
<td>Supplies (high-line)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>B2250</td>
<td>1 (350W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>2 (600W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>3 (850W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
<tr>
<td></td>
<td>4 (1100W)</td>
<td>1 (1200W available)</td>
<td>1 (1400W available)</td>
<td>2 (2400W available)</td>
<td>2 (2800W available)</td>
</tr>
</tbody>
</table>

**AC platform power consumption (low-line input)**

The actual amount of power draw from the AC source depends on the type and number of blades, as well as the power supply AC source voltage and redundancy configuration. This table shows possible configurations for low-line voltage, and the typical and maximum power draw.

<table>
<thead>
<tr>
<th>Blade quantity and type</th>
<th>Typical system power draw (W)</th>
<th>Maximum system power draw (W)</th>
<th>Typical system heat (BTU/hr)</th>
<th>Maximum system heat (BTU/hr)</th>
<th>Number of power supplies installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis only</td>
<td>&lt; 75</td>
<td>&lt; 100</td>
<td>&lt; 250</td>
<td>&lt; 340</td>
<td>1 or 2</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>245</td>
<td>370</td>
<td>840</td>
<td>1265</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>430</td>
<td>610</td>
<td>1470</td>
<td>2085</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>615</td>
<td>870</td>
<td>2100</td>
<td>3890</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>805</td>
<td>1140</td>
<td>2750</td>
<td>3890</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>275</td>
<td>395</td>
<td>940</td>
<td>1350</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>455</td>
<td>635</td>
<td>1555</td>
<td>2170</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>640</td>
<td>885</td>
<td>2185</td>
<td>3020</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>835</td>
<td>1120</td>
<td>2850</td>
<td>3825</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>245</td>
<td>370</td>
<td>840</td>
<td>1265</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>430</td>
<td>610</td>
<td>1470</td>
<td>2085</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>615</td>
<td>870</td>
<td>2100</td>
<td>2970</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>805</td>
<td>1140</td>
<td>2750</td>
<td>3890</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>275</td>
<td>395</td>
<td>940</td>
<td>1350</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>455</td>
<td>635</td>
<td>1555</td>
<td>2170</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>640</td>
<td>885</td>
<td>2185</td>
<td>3020</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>835</td>
<td>1120</td>
<td>2850</td>
<td>3825</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2250</td>
<td>275</td>
<td>395</td>
<td>940</td>
<td>1350</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2250</td>
<td>480</td>
<td>670</td>
<td>1640</td>
<td>2290</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2250</td>
<td>675</td>
<td>960</td>
<td>2305</td>
<td>3280</td>
<td>1</td>
</tr>
</tbody>
</table>
### AC platform power consumption (high-line input)

The actual amount of power draw from the AC source depends on the type and number of blades, as well as the power supply AC source voltage, and redundancy configuration. This table shows possible configurations for high-line input, and the typical and maximum AC mains power draw.

<table>
<thead>
<tr>
<th>Blade quantity and type</th>
<th>Typical system power draw (W)</th>
<th>Maximum system power draw (W)</th>
<th>Typical system heat (BTU/hr)</th>
<th>Maximum system heat (BTU/hr)</th>
<th>Number of power supplies installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis only</td>
<td>&lt; 100</td>
<td>&lt; 100</td>
<td>&lt; 340</td>
<td>&lt; 340</td>
<td>1 or 2</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>250</td>
<td>360</td>
<td>855</td>
<td>1230</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>430</td>
<td>605</td>
<td>1470</td>
<td>2065</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>610</td>
<td>850</td>
<td>2085</td>
<td>2905</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>800</td>
<td>1090</td>
<td>2730</td>
<td>3720</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>280</td>
<td>385</td>
<td>960</td>
<td>1315</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>460</td>
<td>625</td>
<td>1570</td>
<td>2135</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>635</td>
<td>860</td>
<td>2170</td>
<td>2935</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>820</td>
<td>1095</td>
<td>2800</td>
<td>3740</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>250</td>
<td>360</td>
<td>855</td>
<td>1230</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>430</td>
<td>605</td>
<td>1470</td>
<td>2065</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>610</td>
<td>850</td>
<td>2085</td>
<td>2905</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>800</td>
<td>1090</td>
<td>2730</td>
<td>3720</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>280</td>
<td>385</td>
<td>960</td>
<td>1315</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>460</td>
<td>625</td>
<td>1570</td>
<td>2135</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>635</td>
<td>860</td>
<td>2170</td>
<td>2935</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>820</td>
<td>1095</td>
<td>2800</td>
<td>3740</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2250</td>
<td>270</td>
<td>395</td>
<td>925</td>
<td>1350</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2250</td>
<td>480</td>
<td>665</td>
<td>1640</td>
<td>2270</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2250</td>
<td>675</td>
<td>970</td>
<td>2305</td>
<td>3310</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2250</td>
<td>905</td>
<td>1245</td>
<td>3090</td>
<td>4250</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2250</td>
<td>305</td>
<td>415</td>
<td>1045</td>
<td>1420</td>
<td>2</td>
</tr>
</tbody>
</table>
Platform Specifications

<table>
<thead>
<tr>
<th>Blade quantity and type</th>
<th>Typical system power draw (W)</th>
<th>Maximum system power draw (W)</th>
<th>Typical system heat (BTU/hr)</th>
<th>Maximum system heat (BTU/hr)</th>
<th>Number of power supplies installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x B2250</td>
<td>500</td>
<td>690</td>
<td>1710</td>
<td>2355</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2250</td>
<td>700</td>
<td>955</td>
<td>2390</td>
<td>3260</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2250</td>
<td>900</td>
<td>1245</td>
<td>3075</td>
<td>4250</td>
<td>2</td>
</tr>
</tbody>
</table>

**DC power requirements**

When working with a DC-powered VIPRION® 2400 platform, it is important to understand the DC power options and requirements.

The platform supports up to two hot swappable DC power supplies. One power supply powers a chassis that contains zero to four blades, with no redundancy. Two power supplies power a chassis with any blade configuration, with full redundancy.

**DC platform power consumption**

The actual amount of power draw from the DC power source depends on the type and number of blades, and the redundancy configuration. This table shows several possible configurations, and the typical and maximum power draw.

<table>
<thead>
<tr>
<th>Blade quantity and type</th>
<th>Typical system power draw (W)</th>
<th>Maximum system power draw (W)</th>
<th>Typical system heat (BTU/hr)</th>
<th>Maximum system heat (BTU/hr)</th>
<th>Number of power supplies installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis only</td>
<td>&lt; 100</td>
<td>&lt; 100</td>
<td>&lt; 340</td>
<td>&lt; 340</td>
<td>1 or 2</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>240</td>
<td>335</td>
<td>820</td>
<td>1145</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>415</td>
<td>555</td>
<td>1420</td>
<td>1895</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>595</td>
<td>830</td>
<td>2035</td>
<td>2835</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>775</td>
<td>1085</td>
<td>2645</td>
<td>3705</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2100</td>
<td>255</td>
<td>355</td>
<td>875</td>
<td>1215</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2100</td>
<td>430</td>
<td>585</td>
<td>1470</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2100</td>
<td>605</td>
<td>825</td>
<td>2065</td>
<td>2820</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2100</td>
<td>785</td>
<td>1060</td>
<td>2680</td>
<td>3620</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>240</td>
<td>335</td>
<td>820</td>
<td>1145</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>415</td>
<td>555</td>
<td>1420</td>
<td>1895</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>595</td>
<td>830</td>
<td>2035</td>
<td>2835</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>775</td>
<td>1085</td>
<td>2645</td>
<td>3705</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2150</td>
<td>255</td>
<td>355</td>
<td>875</td>
<td>1215</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2150</td>
<td>430</td>
<td>585</td>
<td>1470</td>
<td>2000</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2150</td>
<td>605</td>
<td>825</td>
<td>2065</td>
<td>2820</td>
<td>2</td>
</tr>
<tr>
<td>Blade quantity and type</td>
<td>Typical system power draw (W)</td>
<td>Maximum system power draw (W)</td>
<td>Typical system heat (BTU/hr)</td>
<td>Maximum system heat (BTU/hr)</td>
<td>Number of power supplies installed</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>4 x B2150</td>
<td>785</td>
<td>1060</td>
<td>2680</td>
<td>3620</td>
<td>2</td>
</tr>
<tr>
<td>1 x B2250</td>
<td>255</td>
<td>370</td>
<td>875</td>
<td>1265</td>
<td>1</td>
</tr>
<tr>
<td>2 x B2250</td>
<td>450</td>
<td>640</td>
<td>1540</td>
<td>2185</td>
<td>1</td>
</tr>
<tr>
<td>3 x B2250</td>
<td>645</td>
<td>915</td>
<td>2205</td>
<td>3125</td>
<td>1</td>
</tr>
<tr>
<td>4 x B2250</td>
<td>840</td>
<td>1215</td>
<td>2870</td>
<td>4150</td>
<td>1</td>
</tr>
<tr>
<td>1 x B2250</td>
<td>270</td>
<td>385</td>
<td>925</td>
<td>1315</td>
<td>2</td>
</tr>
<tr>
<td>2 x B2250</td>
<td>465</td>
<td>640</td>
<td>1590</td>
<td>2185</td>
<td>2</td>
</tr>
<tr>
<td>3 x B2250</td>
<td>665</td>
<td>895</td>
<td>2270</td>
<td>3055</td>
<td>2</td>
</tr>
<tr>
<td>4 x B2250</td>
<td>850</td>
<td>1200</td>
<td>2905</td>
<td>4095</td>
<td>2</td>
</tr>
</tbody>
</table>

**Safety requirements**

This equipment complies with these safety requirements of the Low Voltage Directive 2006/95/EC.

EC Type Examination Certificates:

- EN 60950-1:2006 + A11:2009
- CB Scheme
- UL 60950-1 2nd Edition, CSA C22.2 No. 60950-1-07

**Important:** Specifications are subject to change without notification.

**EMC requirements**

**USA--FCC Class A, Canada--Industry Canada Class A**

This equipment complies with Subpart B of Part 15 of FCC Rules for Class A digital devices, Industry Canada ICES-003, Issue 5. Operation is subject to these two conditions:

- This equipment may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

**European Union**

This equipment complies with these requirements of the EMC Directive 2004/108/EC:

As Telecommunication Network Equipment (TNE) in Both Telecom Centers and Other than Telecom Centers per (as applicable):
Platform Specifications

<table>
<thead>
<tr>
<th>Directive</th>
<th>Required Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 300 386 V1.5.1 2010</td>
<td>Class A</td>
</tr>
<tr>
<td>EN 55022:2006 + C1:2006</td>
<td></td>
</tr>
<tr>
<td>EN 61000-3-3:2008</td>
<td></td>
</tr>
</tbody>
</table>

IEC 61000-4-2 6 kV (Direct), 8 kV (Air)

IEC 61000-4-3 3 V/m 80-1000 MHz, 10 V/m 800-960 MHz and 1400-2700 MHz

IEC 61000-4-4 1 kV AC and DC Power Lines, 0.5 kV Signal Lines

IEC 61000-4-5 2 kV AC Line-Gnd, 1 kV AC Line-Line and Outdoor Signal Lines, 0.5 kV Indoor Signal Lines > 10m.

IEC 61000-4-6 3 V

IEC 61000-4-11

As Information Technology Equipment (ITE) Class A per (as applicable):

<table>
<thead>
<tr>
<th>Directive</th>
<th>Required Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 55024:2010</td>
<td>Class A</td>
</tr>
<tr>
<td>EN 55022:2010</td>
<td></td>
</tr>
<tr>
<td>EN 61000-3:2008</td>
<td></td>
</tr>
<tr>
<td>EN 55024:2010</td>
<td></td>
</tr>
</tbody>
</table>

IEC61000-4-2 4 kV (Direct), 8 kV (Air)

IEC61000-4-3 3 V/m

IEC61000-4-4 1 kV AC Power Lines, 0.5 kV Signal and DC Power Lines

IEC61000-4-5 2 kV AC Line-Line and Outdoor Signal Lines, 2 kV AC Line-Gnd, 0.5 kV DC Power Lines

IEC61000-4-6 3 V

IEC61000-4-11

**Important:** Specifications are subject to change without notification.

**Acoustic, airflow, and altitude specifications**

This table lists acoustic levels, airflow movement, and operational altitude specifications for the VIPRION® 2400 platform.
<table>
<thead>
<tr>
<th>Specification type</th>
<th>Detail</th>
<th>Units</th>
<th>Chassis with blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum acoustic output 1</td>
<td>Front</td>
<td>dBA</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>dBA</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>dBA</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Rear</td>
<td>dBA</td>
<td>81</td>
</tr>
<tr>
<td>Altitude 2</td>
<td>Operational</td>
<td>Feet</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>Non-operational</td>
<td>Feet</td>
<td>40,000</td>
</tr>
<tr>
<td>Airflow 3</td>
<td>Entire chassis</td>
<td>CFM</td>
<td>581</td>
</tr>
</tbody>
</table>

**Important:** Specifications are subject to change without notification.

---

1. All measurements taken at 0.6 meter with two power supplies operational and fans at 100% duty cycle. Measurements recorded in decibels A-weighting (dBA).
2. Per BELCORE GR-63-CORE, section 4.1.3: This unit is functional when installed at elevations between 60m (197 feet) below sea level and 1800m (6000 feet) above sea level at the aisle ambient temperatures of 40°C.
3. Fan tray airflow measurements taken at 100% duty cycle and in open air.
China RoHS Requirements

RoHS declaration

The object of this declaration is in conformity with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Hazardous substance levels for China

This table shows how the F5® Networks VIPRION® 2400 platform components conform to the Restriction of Hazardous substances Directive (RoHS) standards for China.
### VIPRION C2400 Chassis Hazardous Substance Table

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Huang (Hg)</th>
<th>Cd (Cd)</th>
<th>Cr+6 (Cr+)</th>
<th>Pb (Pb)</th>
<th>6P (6P)</th>
<th>2B (2B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Parts</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Printed Circuit Boards</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fan Assembly</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Notes:**
- 表示该有害物质在该部件所有材质材料中的含量均在SJ/T 11363-2006标准规定的限量要求以下
  - Expresses that the hazardous substance is below the specified limits as described in SJ/T 11363-2006.
- 表示该有害物质至少在该部件的某一材质材料中的含量超出SJ/T 11363-2006标准规定的限量要求
  - (企业可在此处，根据实际情况对上述行为“”的技术原因进行进一步说明)
  - Expresses that this hazardous substance is above the specified limits as described in SJ/T 11363-2006.

---

**Environmental Friendly Use Period:**

For all enclosed products and their parts is per the symbol shown here, unless otherwise marked. Certain parts may have a different EUP (for example, battery modules) and so are marked to reflect such. The Environmental Friendly Use Period is valid only when the product is operated under the conditions defined in the product manual.
VPRION B2100, B2150, B2250 危险物质表

VPRION B2100, B2150, B2250 Hazardous Substance Table

<table>
<thead>
<tr>
<th>部件名称</th>
<th>有毒有害物质</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>铅 (Pb)</td>
</tr>
<tr>
<td>金属部件</td>
<td>x</td>
</tr>
<tr>
<td>PCA 处理器板</td>
<td>x</td>
</tr>
<tr>
<td>PCA 电脑板</td>
<td>x</td>
</tr>
<tr>
<td>硬盘/固态硬盘</td>
<td>x</td>
</tr>
</tbody>
</table>

注：表示该有毒有害物质在该部件所有组件材料中的含量均在 SJ/T 11363-2006 标准规定的限量要求以下。Expresses that this hazardous substance is below the specified limits as described in SJ/T 11363-2006.

注：表示该有毒有害物质在该部件所有组件材料中的含量超过 SJ/T 11363-2006 标准规定的限量要求。Expresses that this hazardous substance is above the specified limits as described in SJ/T 11363-2006.

注：此环保使用期限是根据产品在标准手册中所规定的条件而工作。
The Environmental Friendly Use Period (EFUP) for all enclosed products and their parts is per the symbol shown here, unless otherwise marked. Certain parts may have a different EFUP (for example, battery modules) and so are marked to reflect such. The Environmental Friendly Use Period is valid only when the product is operated under the conditions defined in the product manual.
Repackaging Guidelines

About repackaging the platform

The VIPRION® 2400 chassis and blades are designed to be shipped and packaged separately. If it becomes necessary to transport the platform to another location or return it to F5® Networks, these guidelines will help ensure that you repack the platform properly.

**Important:** Before returning any equipment, contact F5 Networks to obtain a Return Material Authorization (RMA) case number.

**Important:** You must use shipping materials and packaging provided by F5 Networks when repackaging the platform.

**Note:** Be sure to keep a record of the tracking number and ship date. These will be needed to track lost shipments.

**Note:** Do not include any cables, removable XFP/SFP/SFP+ modules, GBICs, or other peripheral items if you are returning the platform to F5 Networks.

Repackaging the chassis

The VIPRION® 2400 chassis must be shipped empty (with no blades installed) and in F5®-provided packaging.

1. Disconnect the power cords and other cables from the platform.
2. (Optional) Install the chassis handles if they are not already installed to help ease removal of the chassis from the rack.
3. Remove all blades from the chassis.
4. Remove the chassis from the rack.
5. Place the empty chassis onto the shipping box.
6. Cover the chassis with the plastic wrap.
7. Place the foam insert on top of the chassis.

8. Place the accessory box on the foam insert.

9. Close and seal the shipping box.
Repackaging a blade

The VIPRION® B2000 Series blades must be shipped in F5-provided packaging.

1. Disconnect the network cables and other cables from the blade, and then remove any optical modules.
2. Loosen the captive screws on either side of the blade.
3. Grasp the two latches on the front of the blade and pull toward you.
4. Fully extend the latches on both sides of the blade and pull out toward you to remove the blade from the chassis.
5. Place the blade into the antistatic bag, and then place the bagged blade into the black conductive wrapper sheet.
6. Close the black wrapper sheet by securing the tabs on the left and right sides of the box.

7. Place the foam cover on top of the blade box.

8. Close the blade box.
9. Install the foam end caps onto the outside edges of the blade box, and then place the blade box into the outer shipping box.

10. Close and seal the outer shipping box.
Returned Material Data Security Statement

About returned material data security

Follow these data security guidelines when returning equipment to F5® Networks for reprocessing or repair. The guidelines include reprocessing procedures and optional customer-end procedures.

About memory technologies used in F5 equipment

F5® Networks equipment contains volatile, battery-backed volatile, and non-volatile memory. Volatile memory loses all traces of data on power down. Battery-backed volatile memory retains data as long as battery charge is maintained. Non-volatile memory retains data indefinitely.

Volatile memory

Volatile memory loses all traces of data on power down; therefore, customer data that is stored in volatile memory is secure when power is removed from the platform. No further action is required by customers for equipment that includes volatile memory.

Battery-backed volatile memory

This F5® platform contains a coin battery for maintaining BIOS settings and the system clock. All data maintained by the coin battery is used only for system specific tasks. No customer data is maintained by the battery-backed volatile memory. No further action is required by customers for equipment that includes volatile memory.

Non-volatile memory

F5® platforms include various non-volatile memory components. These non-volatile memory components can be categorized as either user inaccessible or user accessible.

Inaccessible non-volatile memory components are programmed during manufacture or software installation. The data stored in user inaccessible non-volatile memory is used for setting voltage levels, determining the sequence of operational events, and the managing appliance operational condition. Data held within user inaccessible, non-volatile memory represents no data security risk to customers. User inaccessible, non-volatile memory cannot be modified by appliance users, and therefore, contains no customer data.

Inaccessible non-volatile memory

This table lists the inaccessible non-volatile memory in this system.
<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
<th>Customer data</th>
<th>Data security method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable firmware stores</td>
<td>Firmware</td>
<td>No</td>
<td>Standard reprocessing or customer removal</td>
</tr>
<tr>
<td>Switch Card SEEPROM</td>
<td>Platform ID, serial number, part number, and so on.</td>
<td>No</td>
<td>Standard reprocessing or customer removal</td>
</tr>
<tr>
<td>PHY EEPROMs</td>
<td>PHY MAC address</td>
<td>No</td>
<td>Standard reprocessing or customer removal</td>
</tr>
</tbody>
</table>

**Accessible non-volatile memory**

This table lists the accessible non-volatile memory in this system. Not all platform variants include all of these non-volatile memory items.

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
<th>Customer data</th>
<th>Data security method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard disk drive (HDD)</td>
<td>F5® product software, customer configuration, and log files</td>
<td>Yes</td>
<td>Standard reprocessing or customer removal</td>
</tr>
<tr>
<td>Solid-state drive (SSD)</td>
<td>F5 product software, customer configuration and log files</td>
<td>Yes</td>
<td>Standard reprocessing or customer removal</td>
</tr>
<tr>
<td>Always-On Management (AOM) Flash chip (soldered-down flash chip)</td>
<td>AOM boot code and customer custom configuration</td>
<td>Yes</td>
<td>Standard reprocessing or customer action</td>
</tr>
<tr>
<td>FIPS card (if present)</td>
<td>FIPS security domain and private keys</td>
<td>Yes</td>
<td>Standard reprocessing or customer action</td>
</tr>
</tbody>
</table>

**About removing data from F5 components**

For components that contain sensitive customer data and cannot be removed from your F5® Networks system, you can take optional steps to remove the data from these components before you return the system to F5 for processing.

**Removing sensitive data from storage drives**

The hard disk drive (HDD) and solid-state drive (SSD) components included in F5® platforms might include sensitive customer data. If you purchase the HDD removal SKU, you can remove the HDD/SSD and coin battery, and these components will be replaced during F5 reprocessing. Otherwise, HDD and SSD components are processed by F5 through standard processing. You can perform a disk erase operation on your system to remove sensitive customer data.

Perform a disk erase operation using one of these methods:

- On systems running BIG-IP® software version 11.6.0 and later, you can use the F5 Disk Erase utility to remove all data on hard disk drives (HDDs) or solid-state drives (SSDs) using a single-pass, zero write disk erase operation. For more information, see http://support.f5.com/kb/en-us/solutions/public/15000/500/sol15521.html.
- On systems running earlier versions of BIG-IP software, you can create and use a bootable USB drive to rebuild the system with a clean image of BIG-IP software. This runs a disk erase operation...
Removing IP address data from Always-On Management

If you have configured an IP address for the Always-On Management (AOM) subsystem, you can remove the customized IP address from the system before returning it to F5 Networks.

1. Connect to the system using the serial console.
2. Open the AOM Command Menu.
   Esc ( 
3. Assign a new management IP address, netmask, and gateway:
   • To use DHCP to assign the addresses, type y when prompted about using DHCP.
   • To manually assign the addresses, type n when prompted about using DHCP. At the prompts, type values for IP address (required), netmask (required), and gateway (optional).

   A confirmation message displays the configured management IP address, netmask, and gateway.
4. (Optional) Type i to verify the assigned addresses.

Removing sensitive data from an internal hardware security module (HSM)

If the system includes an internal hardware security module (HSM), also referred to as a FIPS card, you can remove the sensitive customer data from HSM before returning it to F5 Networks.

Important: The HSM cannot be removed from the platform.

1. Use the Configuration utility to delete all key/certificate pairs.
   a) On the Main tab, click System > File Management > SSL Certificate List.
      This displays the list of certificates installed on the system.
   b) Select the certificates that you want to delete and click Delete.

      This removes all .crt, .exp, and .key files from the system.
2. Log on to the command line of the system using an account with root access.
3. Initialize the HSM and reconfigure it using fictitious data.
   run util fips-util -f init
   For more information on using this command on a FIPS platform, see BIG-IP Platform: FIPS Administration.

Important: This deletes all keys and makes any previously exported keys unusable.
Index

10G direct attach copper cables 22
40GbE interfaces, See QSFP+ interfaces. 40G interfaces, See QSFP+ interfaces.

A

acoustic specifications 66
AC power cord
    connecting 34
AC-powered equipment
    cables 61
    connecting to a power source 33
    guidelines 56
    power consumption with high-line input 63
    power consumption with low-line input 62
    powering 34
    power provisioning 61
AC power requirements
    about 61
AC power supply
    about 45
airflow
    chassis installation 28
    specifications 66
Alarm LED
    behavior 16
    blade standard operating state 14
    blade status 14
alerts
    clearing 12
    defining custom alerts 16
altitude specifications
    operational 66
Always-On Management (AOM)
    capturing blade console 24
    hostconsh 23
AOM, See Always-On Management (AOM), AOM Command Menu
    23
    accessing using serial console 24
    options for 23
AOM IP address data
    removing 81
Auto-MDI/MDIX 20

B

battery replacement 55
blades
    about 10
    about installing 36
    halting 37
    hardware included with blades 26
    installing 37
    LED status 14
    mixing blade models in chassis 36
    removing 37
    verifying availability 43
blanks
    about 36
    removing 36
breakout cable 17

C

cable management system
    installing 31
cables
    10G direct attach copper 22
    connecting 39
cage nuts 29
CD/DVD-ROM drives
    support for 26
chassis
    about 9
    environmental operating specifications 60
    grounding 32
    ground wire 49
    hardware included with AC chassis 25
    installing into a two-post rack 29
    operational temperature 60
    repackaging 73
    unpacking 27
    ventilation 55, 57
chassis grounding stud
    connecting to ground terminal 33
Check button
    clearing alerts 12
China material content listing, See China RoHS Directive standards.
China RoHS Directive standards
    69
    declaration 69
    clear alert operation 12
    cluster default gateway IP address
        configuring 41
    cluster IP address
        about 40
        configuring using config utility 42
        configuring using LCD 40
        configuring using tmsh 42
    cluster IP subnet mask
        configuring 40
    cluster member
        configuring management IP address 41
clusters
    default cluster 40
    management 40
Configuration utility
    licensing the platform 42
    config utility
        accessing using serial console 42
    console port
        location 10
        pinout 22
Index

cooling system
platform 57

D
data communications equipment (DCE) 20
data terminal equipment (DTE) 20
Date and Time screen 12
DC connector
assembling and preparing 49
DC input connector
connecting to power supply 35, 50
DC-powered equipment
power consumption 64
DC-powered platform
connecting to a power source 35 guidelines 56
powering 35, 50
DC power supply
about 47
DC connector 49
wiring the DC connector 49
device service clustering (DSC) 39
drive assembly
about 52
DSC, See device service clustering (DSC).
duplex mode 20
dynamic routing protocols 59

E
electromagnetic compatibility (EMC) certifications 65
electrostatic discharge (ESD) 25, 28, 36, 55
EMC certifications 65
environmental guidelines 69
See also China RoHS Directive standards.
environmental operating specifications 60
environmental warnings 69
See also China RoHS Directive standards.
ESD, See electrostatic discharge (ESD).
Ethernet hubs
requirements 26

F
failover cable 39
failover port
location 10
pinout 23
fan tray
about 51
indicator LEDs 14
replacing the fan tray 52
FIPS cards, See hardware security module (HSM).
four-point rack mounting rail kit 30

G
Gigabit Ethernet 26
grounding stud
connecting to ground terminal 33
grounding the chassis 32
guidelines
AC-powered equipment 56
DC-powered platform 56

H
hard disk drive (HDD)
replacing the drive assembly 52
hard disk drive assembly
replacing 53
hardware
AC-powered equipment 56
DC-powered platform 56
hardware installation
planning 25, 28
hardware requirements
peripherals 26
hardware security module (HSM)
removing data 81
hardware specifications 59–60
hard-wired failover 39
Hold mode 12
hostconsh
defined 23
hot swap
of power supply 45
of transceiver modules 59
hubs 26

I
indicator LEDs
about 13
AC power supply 15
actions 13
alert conditions 16
blades 14
DC power supply 15
fan tray 14
interface command
valid media types 20
interface mode 20
interfaces
configuring 19
duplex mode 20
managing 19
media type 20
QSFP+ 17
SFP+ 17
supported transceivers 17
viewing status of all interfaces using Configuration utility 20
viewing status of all interfaces using tmsh 19
viewing status of a specific interface using tmsh 19
viewing valid media types 21

J
jumbo frames 59
L

LCD menus 12
LCD module, USB
  about 11
  backlight option 12
  brightness option 12
  contrast option 12
  control buttons 12
  menus 12
  pausing on a screen 12

LEDs
  blades 14
license
  configuring 42

M

maintenance
  DC power supply 48
  fan tray 52
  power supply 46
management IP address, See cluster IP address.
management IP address for cluster member, See cluster member.
management port
  connecting 39
  location 10
memory technologies
  about 79
  battery-backed volatile memory 79
  non-volatile memory 79
  volatile memory 79
mixed chassis 36

N

negative pressure fan system 57
network interface LEDs
  appearance of 21
  QSFP+ 22
  SFP+ 21
network interfaces
  blades 17
  supported transceivers 17
network interface specifications, See transceiver module specifications.
non-volatile memory
  types 79

O

operational temperature 60
Options menu 12

P

pass-through adapter, See RJ45F to RJ45M rolled serial adapter.
pinouts
  cables 22
pinouts (continued)
  console port 22
  failover port 23
  specifications 22
platform
  about 9
  cooling system 57
  installing 25
  replaceable components 45
  unpacking 27
  ventilation 55, 57
platform airflow 57
platform specifications 59–60
power cables
  AC 61
power supplies, AC
  indicator LEDs 15
power supplies, DC
  indicator LEDs 15
power supply
  installing a DC power supply 48
  installing a power supply 46
  removing 46, 48
  wiring the DC connector 49
Product version screen 12

Q

qkview utility 39
QSFP+ interfaces
  about 17
  breakout cable 17
  bundling 17
  configuring bundling using the Configuration utility 18
  configuring bundling using tmsh 18
  fiber ports 10
  LEDs 22
  location 10
  ordering components 17

R

rack mount
  chassis spacing 25
  four-point rack mount 30
  general environmental guidelines 55
  two-point rack mount 29
rack mount installation
  19-inch rack 28
  23-inch rack 28
redundancy
  system 39
redundant system configuration, See device service clustering (DSC).
remote administration 26
repackaging
  about 73
  blades 75
  chassis 73
replaceable components
  about 45
  AC power supply 45
replaceable components (continued)
DC power supply 47
drive assembly 52
fan tray 51

returned material data security
about 79
accessible non-volatile memory 80
battery-backed volatile memory 79
inaccessible non-volatile memory 79
memory technologies 79
non-volatile memory 79
removing data from components 80
volatile memory 79

RJ45F to RJ45M rolled serial adapter 39
RMA 73
Rotate mode 12

S
safety agency approvals 65
Screens menu 12
serial console
   hardware installation 26, 39
serial failover 39
SFP+ interfaces
   LEDs 21
   location 10
SFP hot swap 59
solid-state drive (SSD)
   replacement policy 52
specifications
   acoustic 66
   airflow 66
   altitude 66
   blades 59
   chassis 60
   chassis environmental operation 60
   China RoHS 69
   system features 59
standard operating state
   blade Alarm LED 14
   blade Status LED 14
Status LED
   blade standard operating state 14
   blade status 14
storage drives
   removing sensitive data 80

switches 26
system
   resetting 23
      resolving when locked up 23
System menu 13

T
TMOS, See Traffic Management Operating System.
tmsh, See Traffic Management Shell.
Traffic Management Operating System
   relation to AOM 23
Traffic Management Shell 17
transceiver module specifications 22
transceivers
   supported 17
transporting the platform 73
two-point rack mounting brackets
   about 29
      installing into a rack 29
two-post rack
   chassis installation 29

U
unpacking
   chassis 27
USB flash drives
   support for 26
USB LCD module
   about 11
      using 11
USB port
   supported CD/DVD-ROM drives 26

V
vCMP 59
ventilation 55, 57
Virtual Clustered Multiprocessing, See vCMP.

W
warnings
   environmental 55