BIG-IP® Local Traffic Manager™:
Concepts

Version 11.5.1

Table of Contents

Table of Contents

Legal Notices and ACKNOWIEdgmMENTES........c..uuuiiiiiiiiie e 13
[T o T U [] (o] TP PPPPPTTR 13
ot g [0 1Y 1= To fo o 1= | £ SS 14

Introduction to Local Traffic Manager. ... 19
What is BIG-IP Local Traffic Manager?............cooeiiiiiiiieeeeeeee s e e e e e e e e e e enenns 19
Timeout settings for conNections and SESSIONS..........ccoiiiiiiieiiiiiiiee e 19
(70Tl aT=Tot o] oI =TT o] o TR 19
[dIE TIMEOUL OPTIONS. ...eeiiiei ittt e e et e e s et e e e e nnnneas 20

Idle timeout settings that affect connection reaping..............ccccevevviviiviviiiiiivnnnnnnn. 20
Other IMEOUL SELHINGS.eiiieiiiiieee ittt ettt e e st e e e st e e e e e sabneeaeeaaes 20
Idle timeout settings that do not affect connection reaping...........cccceevvvvvvvvnvnnnnnnn. 21
ADOUL the NETWOIK MAP. eeiiieiiit et naeas 21
The filtering MeChANISM.........ciiii i e e e e e ae e 21
ODJECE SUMIMAIY ...ttt et e et e e e e e et e e e e nnebeas 22
The network Map diSPIaY......cccoieiiiiiii i e e e e e e e e e e e 22

VITEUBL SEBIVEIS ..ttt ettt e e e sttt e e e e ettt e e e s s b be e e e e e snbbe e e e e anbaeeeeennereas 25
INtroduCtion tO VIrtUAl SEIVEIS.......ooi ittt e e e e e e e e e e eanees 25
ADbOUL Virtual SEIVEI SEIINGS.iieei ittt e e e e e e e s s re e e e e e e e e e s e s annnnnes 25

TYPES Of VIMTUAI SEIVEIS....cii ittt e e 25
About source and destination addreSSeS.........cuvivuiiiieiiiiiiiie e 27
About destination SErVICE POITS........ocuiiiieiiiiiiie ettt 29
Status notification to virtual addreSSES.........covviiiiiiiiiiiiee e 29
About profiles for traffic tYPeS........coo i 30
About VLAN and tunnel assignmeNt............oooiiiiiieiiiieie et ee e e e e e e 30
About source address translation (SNATS)......cccoiiiriiriiiiie e 30
About bandwidth CONLIOL..........cuuiiiiiiiii e 30
ADOUL traffic ClASSES...cciiiiiiiiie e 31
About connection and rate MItS...........eeviiiiiiiiii e 31
About connection and persistence MIrrOriNG.........cuueieriiiiieerniiee e 31
About destination address and port translation............cccccceeeeeciiiiiieeeeee e, 31
ADOUL SOUICE POIt PreSEIVALION.cciiiiiiiee ittt ettt 32
Y o Yo 10 o (o] T= T o o] L= SRR 32
ADOUL AULO TAST NOP...eiiiieiiiii e 32
F Y o To UL A G PRI 33
VirtU@l SEIVEI FESOUICES.coi ittt ittt e e e e e e e ettt ee et e e e e e e e s et e e eeeaaeeeseeannnnnne 33
About virtual addreSs SEHINGS........ciii e a e e e 33
About automatic deletioN..........c..uuuiiiiiiiiee e 33

Table of Contents

ADOUL traffic GrOUPS.ci ittt 33
ADOUL roUte AdVEItISEMENT... ... uviiiii it s seaeeee s 34
About ARP and virtual addreSSES.cuuuii ittt 34
ADOUL ICMP €CNO FESPONSES.uviiiiiiiiiieeeeeeieisitrtrerer e e e e e e e e e sssssrea e eraeeeeesseannnnne 34
Virtual server and virtual addreSs STAtUS.cueiiiiiiiiiiiie e 35
Clustered MUIIPIOCESSING.uuvuiiiiiiiiiee e cce e e e e e e e e e e e e e e s s s rrraaeaaeeeaas 35
LocCal TraffiC POlICIESuuiiiiiiiiiiiee ettt e e et e e s s nbeeeeesanes 37
About local traffic policy MatChiNg............eueiiiiiiiii e 37
About strategies for local traffic policy matching.........cccccvveeviiieni e, 37
Local traffic policy matching Requires profile Settings..........cccovviiiiiiiiiiiieeineeeennnn. 38
Local traffic policy matching Controls settings.........cccccvvevvereeeiin i 38
About rules for local traffic policy MatChing...........ooooiiiiiiiii s 38
About conditions for local traffic policy matching..........ccccvvvvvieei i, 38
Local traffic policy matching Conditions 0perandscccccceoeiiiiiiiiiiiiceneeneeeeenn, 39
About actions for a local traffic PoliCY rUleccooi i 41
Local traffic policy matching Actions Operandscccccceeieeeiiniiiiiiiiiieieee e 41
[N [o Yo 1= T TP PP PTPPRR R TPTPPIN 45
Y o Yo 10 1 T o =SOSR 45
About the Nnode addreSs SEHNG......uu i e e e e e e e e e e e e aeeaanes 45
About health monitor aSSOCIALION.uuuiiiiiiiee e e e e 45
About monitors and automatic NOde CreatioN............cc.uuuiiiiiiiiiie e 46
About monitors and explicit NOdE CreatioN.............coiiiiiiiiiiii e 46
ADOUL MONITOT FEMOVAL.eeiiiiiiiiiiii ittt e e e e e et e e e e e e e e e aannees 46
About Node aVaIlaDIlILY...........eiiiii 46
About the ratio Weight SEtNG.........uuuriiiiiiie e e e e e e e e e e e e eeeaaens 47
About the connection rate limit SEHNG.........cooiuriiiiii e 47
ADOUL NOAE STALE... ...ttt e e e e e e e e e bbb e e e e e e e e e e e e sananees 47
ADOUL NOAE SLALUS.t e e e e e e e e e e e e e e e e e s es e e eeeeeaeaeeeeanannnnnes 47
[0 X] =PRI 49
(T oo [0 1o o] 18 (o 1 o To Yo - PESRRR 49
About load balanCing POOIS.........c.uiiiiiii e 49
POOI TEALUIES. ... ettt e e et e e e e st e e e e e nbae e e e e nnereas 49
About health monitor asSOCIALION.oiiiiiiiii e 50
Pool member availability..............oooiiiiiiiiiicc e 50
Secure network address translations (SNATs) and network address translations
NI TS PRSPPI 51
Action when a service becomes unavailable..............ccccccoiiiiii 51
Y [0 LV = U] 1 1 1= TS 51
Type of Service (TOS) 1EVEL.......oooi e 51
Quality of Service (QOS) IEVEL.......cccoi i 52
NUMDBEr Of FESEIECT THES....iiiiiie e 52

Table of Contents

ADOUL TCP reQUESE QUEUE....... . eeieeee ittt ettt 52
About load balancing Methods...........ceviiiiiiiiiii e 53
About priority-based member activation...........cccccveviiiiiiiiic 55

POOI MEMDET fEAIUMES....cci it e 56
ADOUL POOI MEMDET STALE.ci ittt 58

Pool and pool MEMDET STALUS.......ccceeeiii i e e e e e e 58
L (0} 11 1SR 59
INtrodUCTEION O PrOfilES.eeeeiiiei e e e e e e 59
L (0] 11 LT 1Y/ 0 1= LR 59
Default Profil@S........ et 59
Custom and parent ProfileS...... ... —————————— 60
The default profile as the parent profile...........ooo e, 61
The custom profile as the parent profile...........ooociiiii e 61
Profiles and VIFTUBL SEIVEIS.ueiiiiiiaeaiie ittt et e e e e e eeeaaaaee e as 61
HT TP PrOTIIES .ttt e et e e e e e e s e bbb r e e e e e aeeeeaeannnnees 63
Introduction t0 HTTP Profiles.........ueiiiiiie e 63
(7=t a1 = U I el o] (0] 01T 1= 63
PrOXY IMOGE. ...ttt et e et e e e et e e e e nnebeas 63
Parent Profile... ..o —————— 64

o I =111 o T PP PPP PP PRP 64
BasiC AULh REAIM ... 64

[11 = o3 o) PSS 64
FallDACK EITOI COURS. ... ettt a e e e 65
Headers in HTTP FEOUESES.ooiiiii ettt 65
Content erasure from HTTP headers...........ueiiiiiiiiiiiiiiiiieeeee e 65
Headers in an HTTP rE@SPONSE.......uuiiiiiiiiiieiiiiie ettt 65
RespoNse ChUNKING............oooiiii e 65
OneConnect transformMatioNS..........cooi it 66
Rewrites of HTTP redire@CtioNS............uuuiiiiiiiiiiiiiiiii e 67
Cookie encryption and deCryPlioN..........cueeeeeiiiiiiee e 68
X-Forwarded-For header iNSErtioN...........cccuuuiiiiiiiiiiee e 68
Maximum columns for linear White SPaCe...........ccoviuiiiiiiiiiie e 68
Linear White Space SEPAratOrS.............euuuriiuriiiiiiiieieieieee e e e e ee e e e e e e e e e eeeee e 68
Maximum NUMDET Of FEQUESTS.........uiiiiiiiiiie it 68

(o) VAV AT T a1 T= To [T 68
X-Forwarded-For header aCCEPtaNCe..........uviie it 70
Alternate X-Forwarded-For headers.............ooiiiiiiiiiii s 70
SEIVEI AQENT NAIME....ieie ettt e e et e e e e e e s s e eeees 70
ENfOrcemMEent SELHINGS.uvuiiiiiiiicie it e e e e e e e e e e e e e e e eeaeaaanes 70
Allow truncated redirECLS.........oeeeiiiiiieie e e e e e e e e e e e e eenneees 71
MaxXimumM NEAAET SIZE.......cooiiiiiiiii e 71
OVErSIZE ClIENT NBAUEIS.ueiieiieiie et e e e e e e s e reeeeees 71

Table of Contents

OVErSIZE SEIVEN NEAUEIS.ueiiiiiii et e e 71
Maximum NEAAET COUNL.........cciiiiiiiiie ittt e e e e e 71
EXCESS ClIENt NEAUEIS.ceiiiiiiiee i 71
EXCESS SEIVEI NEAUEIS.......uviiiii ittt 72
SUpPOrt for PIPEIINING......coiiiiiie e 72
UNKNOWN MENOAS.eiiiiiiiiiiie et e e e e 72
EXPIICIE PrOXY SEIINGS. .. eeieeiiiiiieeeiitie ettt e et e e e e e e e annneas 72
DINS RESOIVET....ceiiiiiiiiie ettt ettt sttt e bt e e s sttt e e e e nnnbe e e e e e nneaeas 72

ROULE DOMAIN. ...ttt e ettt e e e e e e e e e e s e et e e e eeeaaaeeeeeas 72
TUNNEL NBIME.... ettt e e et e e e s sttt e e e s sabbeeeessbbeeeeesanes 73

HOSE NAIMES. ... e e e e e e e e e e e e e e e e eeeeaeae bbb b aeaaaas 73
Default Connect HandliNg...........oooiciiiiieiiiecce e 73
Connection Failed MESSAJE.cuuiiii ettt 73

DNS Lookup Failed MESSAQE.ccccuiriiiiiiiie e ettt e e e e s e e e e e e e 73

Bad REQUESE MESSAGE.uuiiiiiiiiiii ettt ettt 74

Bad RESPONSE MESSAQE.....ciieeeeiiiisciitiieie e et e e e e e e s sr st e e e e e e e e s s s s st e areaaaaeaeaan 74

SFIOW SEIIINGS. ¢ ettt ettt e e st e e s s et e e s nb b e e e e eeeens 74
(o)1 o TR 01 (=T V= | PSSR 74
SAMPIING TALES.....eiiiiitiiie et e e e e e naeneas 74
About HTTP compression ProfileS..........uuuieiiiiiee it e e s e n e e e e e ennnees 74
HTTP Compression profile OptioNS...........oooiiiiiieiiiiiie e 75

L] oo] o] (=111 (o o PSSR 75
CONENE COMPIESSION. ...eiiiiitiiiee ittt e ettt e et e et e e et e e e et e e e s e nbre e e e e aneneas 75
Preferred compression Methods. ... 76
Minimum content length for COMPreSSioN...........cvii i 76
Compression BUfEE SIZE.........uuiiiiiii i 76
ADOUL the Vary NEAEr..........coiuiiiiiiiii e 76
Compression for HTTP/1.0 reQUESES.........uuuiiiiiiiieeeee i eicciinireeee e e e e e e e e s sssnnrnaneeee s 77

About the Accept-Encoding header............ccuvviiiiiiiiiieiiiieee e 77
BrowSEr WOIKAIOUNGS.vviiiii ittt ettt e s s snnbee e e s e nneeeas 77

About Web Acceleration Profiles. ... 78
Web Acceleration profile SEttNQS.uuvviieeiiiiiiie e 78

Other Application-Layer ProfileS........ e a e e 81
Overview of other application-layer profiles. ... 81
About HTTP compression ProfileS..........uuueeiiiiiee i e e e e e e ennnees 81
HTTP Compression profile OPtioNS..........cceiiiii e 82

About Web Acceleration profiles.........c..uuiiieiiiiiee e 82
Web Acceleration profile SEttNGS.couiii i 82

Web Acceleration Profile statistics desCription...........ccceeevvviiviiiiiiiiiiieeee s 83

Ll I 0] (0] {11 ST PPPPPPTR 84
[N ST o (0] 111 PR 85
RTSP PIOfilES. ..ttt e e e e e et e e e e e e e e e as 85
1@ AN = o] o] 1= PSR 86

Table of Contents

Request Adapt and Response Adapt Profiles. ..., 86
DiameEter Profil@S.....ccoo oo ———————————————————— 86
RADIUS PIOfIES. ..ceeeiieieite ettt e et e e e e e e 87
S o] o)] T PRSI 87
SMTP PrOTIES. ..ttt e st e e e e e e e s anbeeeeeeaaes 88
LY I S T o 1011 SRR 89
ADOUL iISESSION PrOfilES. ... 89
Screen capture showing compression SettingsS...........oocccciviieeireie e 89
REWIIEE PrOfIlES...eeiie i 90
ADBOUL URI tranSIation..........oooiiiiiiiii et 91

Rules for matching requests to URI FUIES...........iiiiiiiiiieiiie e 91

ADOUL URI RUIES.eeiiiiiiiiiii ettt e e s aaaree e s 92
About Set-Cookie header translation.............ccccuuiviiiiiiieei s 92

DY | I o] o) 11 L= SRR 92
SPDY PrOfilES. ..ttt e e a e aae 93
SPDY Profile SEtINGS.....ccuviiiiieieiiec e ———————— 94
SOCKS PIOfIlES. ...ttt e et e e s e e e aae 95
L G o1 (011 PSR 96
About FIX profile tag SUDSHIULION...........coiiiiiiiiie e 96
About steering traffic using the FIX profile.........cccooveiie i, 96
About validating FIX MESSAQES.ccuuiiieiiiiiie ettt 96
About using SSL encryption for FIX MeSSaQES......uuuuiiiieeeiiiiiiiiiiiiiieieeeee e eee s 98
AboUL 10ggiNg FIX MESSAJES.eiiiiiiiiiiie ittt 98
Video Quality of EXperience ProfileS. ...t 98
About the video Quality of Experience profile..........ccccviiiiiiiiiiie e, 98

PY oTo U M 0 =F=T o] o a1 o] o IR o o] (= SRR 99
CONTENT PrOfilES e st s et e e s et e e e e e naeeas 101
Introduction to HTML content modifiCation.............occuuiiiiiiiiiiiieeeece s 101
About content SEIECLION LYPES.......ci it e e 101
TYPES OF HTIML FUIES ..ttt e e e e e e e e e e e e anneeees 101
Sample HTML rules configuration...........c.coiioceiiiiieiiiece e e e 102
SeSSIioN PersiStenCe ProfileS. ... 103
Introduction to session persistence Profiles..........cccceee i 103
PersisStence Profile tYPES........ueii i 103
Session persistence and IRUIES...........ooiiiiii i 104
The OneConnect profile and SESSION PErSISIENCE.covvviiiiiiiiiiiie e 104
HTTP parsing with and without a OneConnect profile...........cccceeeeiiiiii e, 105
Criteria for SESSION PEISISIENCE.iuuiiiie ittt 105
The Match ACross Services SEtting............coovvvieiiiiiiiiiiiiccrre e e e e, 105

The Match Across Virtual Servers SEtting..........cuveeeiiiiieee e 106

The Match Across POOIS SEttNG..........ccooeiiiiiiieeeeeerr e e e 106
COOKIE PEISISIENCE. ...ttt ettt ettt ettt e e e st e e s abb b e e e s sananeee s 107

Table of Contents

HTTP Cookie INsert Method. ... 107

HTTP Cookie Rewrite Method. ... 107

HTTP Cookie Passive MethOd.............euiiiiiiiiiiiiiiiiieeeeee e 108
Cookie hash MethOd..........ccuuiiiiiiiii e 108

IPVA 1P addreSS €NCOTING.uuuiiieiiiiiiiee ittt e e 108

[0 =T g oo T[] o PR 109
Destination address affinity PersiStENCE.coicuuiiiiiiiiiiee e 110
[P2 TS T L= 515 (= o] TSR 110
Microsoft Remote Deskiop ProtoCcol persiStenCe...........ceeeviiviiiieiiiiieee e 111
Benefits of Microsoft Remote Desktop Protocol persistence..........cccccccvveeeeeennnn. 111
Microsoft Remote Desktop Protocol persistence server platform issues............ 111

Y 0= T £ 1) (T o =R 112
Source address affinity PErSISTENCE.coiuuiiiiiiiiiiie e 112
ST I 1= TS 1) (=T o =R 112
UNIVEISAl PEISISTEINCE.eiiiiiitiiee ettt e e et e e s bt e e e s sbreeeeeanes 113
ProtOCO] PrOfil@S. ... e ittt e e e e e e e e e e 115
AbOULt ProtoCOl ProfileS......ueieiiiie e 115
The Fast L4 Profile tYPe. ...ttt e e e e e naeees 115
PVA hardware aCCeleration...........coeooiiiiieeiiiiiiee et 115

The Server Sack, Server Timestamp, and Receive Window settings................. 116

The Fast HTTP Profile tyPe......coi oot e e e e e e nannnees 116
ADOUL TCP PrOfIES. ...ttt e e e e e e e e e s e snnnnees 117
About tcp-lan-optimized profile SEttiNgS.........coovccciiiviii e 118
About tcp-wan-optimized profile Settings..........oocciiiiiiiiii e 118
About tcp-mobile-optimized profile settings.........ccccovivi e 118

About mptcp-mobile-optimized profile Settings......... ... 119

The UDP Profile tyPe. ..ttt e e e e e e e re e e e e e e e e e e e s nanneees 120
The SCTP Profil@ tYPe... et e e e e e e e e nneeees 120
The ANY 1P Profil@ tYP€. .. e e e e e e e e s s e nanrnnes 120
Remote Server Authentication ProfileS.........ccuiiiiiiii e 123
Introduction to authentication ProfileS.........ccccovviiiiiiii 123
BIG-IP system authentication Modules............cccooiiiiiieiiiiiiie e 123

The LDAP authentication MOUIE............cooiiiiiiiiiiiiie e 124
The RADIUS authentication MOAUIE...........oeeiiii i 124
The TACACS+ authentication MOAUIE..........cooiiiiiiiiii e 124
The SSL client certificate LDAP authentication module.............cccccoiiiieiieee i 124
Search results and corresponding authorization status..............cccccececiiieeeeenennn. 125

SSL client certificate authorization.............cccccieee e 125

SSL certificates for LDAP authOrization.............coooiiiiiiiiiiiiiiieeee e 125
Groups and roles for LDAP authorization..............cooivieiiiiniiiiee e 126

The SSL OCSP authentication MOdUIE..........cooi i 126
The CRLDP authentication MOAUIE............cueeeiiiiiiiiieeeee e 128

Table of Contents

The Kerberos Delegation authentication module.............cccoviiiiiiiiieeiiiiiec e, 128

O N el PrOfilS . ettt e e ettt e e e e e e e e e et e e e e eeeaas 129
Introduction to other ProfilesS..........cooiiiiii e 129

About ONECONNECT Profil@S.......oo it 129
OneConnect and HTTP Profiles.........ccccviiiiiiiiieee e 130
OneConnect and NTLM Profiles..........ccuuiiiiiiiiiaa e 131
ONECONNECE ANA SNATS.uuiiiii ittt et ree e e st e e e s sbreeeeeanee 131

ADOUL NTLM PrOfilES. ...t e e e e e e e e eneeees 131

The Statistics Profile tYPe......ccoi i e e 132

The Stream Profile tYPe. e 133

The Request Logging Profile tyPe......uuuee i 133

The DNS Logging Profile tyPe. ..o 133
Health and Performance MONITOMING.........uuuuiiiiiiiiieie e 135
Introduction to health and performance MonitoriNg..........occovvvveiiiiiiiee e 135
Comparison of monitoring Methods.........ccoooei i 135

ADOUL MONITON SELHINGS.eeeiiei it 136

Overview of monitor implementation................ccoeee e 136

1Y/ Fo] a1 o) o 1= 5] 1T = o] o S PSR 138
Transparent and REVEISE MOUES..........uuuuuuiiiiiiiiiieie e e e e eee e e e e e as 139
Monitors that contain the Transparent or Reverse settings.........ccccevvveeeeininnen. 140

The Manual RESUME fRALIUIE............uiiiiiiiiiiie e 140
Resumption Of CONNECHIONS...........iiiiiiiiiie e 140

The Time Until Up fEALUIE.........cooiieeeeee e 141
Dynamic ratio 10ad DalanCing.............oeiiiiiiiii i 141
Monitor plug-ins and corresponding monitor templates..............cccvccccieieeeneennnn. 141

Monitor association with pools and NOAES............ccooiiiiiiiiiiiiii e 142
MORNITOE INSTANCES. ... ittt ettt e ettt e e e e e e e e e s bbb e e e e e eaeaaeeeaaan 142

N N I RO RR 143
g LgeTo [0 Tex i o] I (o TN AN VAN ISP UPEPUPR 143

NATS for inbound CONNECLIONS..........uiiiiiiiiiie e e e 143

NATS for outbouNd CONNECHIONS.......ccoiiiiiiiiie et a e e e 145

ST AN 1 SO 147
About source address translation (SNATS).....ccciii i i e 147
Comparison of NATS @and SNATS.....ccoiiiiiiiie et 147

SNATSs for client-initiated (inbound) CONNECLIONS........cccceeiiiiiiiie e 148
SNATSs for server-initiated (outbound) CONNECHIONS...........ooiiiiiiiiiiiiiiei e 149

Y AN I 4] 0] =T g 1= o = L4 o P 150

S N I 1Y 61 F PP PPPPPPTPRPRRN 151
ADOUL tranSIation A0AIrESSES.iuviiie ettt et e e e nnaeas 151

Table of Contents

Original 1P AdrESSES.eiiieiiiiiiie ettt e e annneee s 152
VLAN TFAIC. .. ettt et e e et e e e e e e e nreeas 152
L L LT O F= T ST =R PR 153
ADOUL traffiC CIASSES.t e e e e e e e anaeees 153
IRUIBS . ettt e e oottt e e e e e e e e e bbbt e e et e e e e e e e s e e e nee s 155
INtrOdUCHION O TRUIES.eeeiieeiiie e e e e e e e e e e e e e s e e snnenees 155
BasSIiC IRUIE ElEMENTS.o 155
EVENt dECIAratioNS.eeiiiiiiiee e 156
(O] 01T = 1 (o] €= TSP 156
IRUIE COMMANDS.......oi it e e r e e e e e e e e s s e neneeeeeas 156
B =2 To To] I oo 1 4 .4 7= o T A 157
The NOAE COMMANT.......oiiiiiiei it e e e e e e e e s s e e e e e eeeeeeesaannnenees 157
Commands that select a pool of cCache SErVers.........cccccceeeiiiiiiiiiie e, 157
The HTTP::redireCt COMMANG..........uuuiiiiiiiiiee e e e e e e e e e e e e e e e e e nnnenees 158
The snat and sNatpoOl COMMEANGS..........uuuuiiriiiiiie e e e e eas 158
iRules and administrative PartitionS..........oc.ueeeieiiiieee e 159
TRUIE EVAIUALION.eeeiiiieee ettt e et e e e e e e e e e s e e eeeeas 159
BV TP o 159
TRUIE CONTEXL. ...ciiiiiieiii ittt e e e e e e e e eeeeeas 159
iRules assignment t0 @ Virtual SEIVEN..........cooiiiiiiiiiiiiiee e 160
IRUIE COMMANA LY PES. . i e e e e e e e e e e e e e et e e e ee e e reernranaaas 160
IRUIES AN PrOfIlES. ..cciiiieeiee et s 161
The profile COMMANG..........ueiii e e e e e e, 161
Commands that override profile SettiNgS.........ccvveiiiiiiiiiiiii e 162
(D F= 1= Wo | (010 6 1 TSP PPPPTPRN 162
About the class match command..........cccccooeiiiiiiiiiii e 162
o] =T T 0] o) Ko 1= T 163
=SSR 163
IFIlE COMMANDS. ... e 164
Dynamic Ratio Load BalanCiNg.......iiiieeoiiiiiciiiiiieeieee e e r e e e e e s s e ssnnnaanneeee e e e e e e ean 165
Introduction to dynamic ratio load balancing...........c.ccccveiiiiiiiiii e 165
Monitor plug-ins and corresponding monitor templates...........ccccooeevcvvvvvieeenennnn. 165
Overview of implementing a RealServer Monitor..........c.evveiiiiiieeniiiiee e 165
Installing the monitor plug-in on a RealSystem server system (Windows
(L] 67 o]) PP PRP T PPPRPPN 166
Installing and compiling a Linux or UNIX RealSystem server monitor plug-in....166
Overview of implementing & WMI MONITOT..........cuuiiiiiiiiiiiee e 166
[IS version support for the data gathering agent files..............ccccovieeeei s 167
Installing the Data Gathering Agent f5Isapi.dll or f5isapi64.dll on an IIS 5.0
=] V=T TP P PP PPPPPPPTPPTPIN 167

10

Table of Contents

Installing the Data Gathering Agent f5isapi.dll or f5isapi64.dll on an 1IS 6.0

=] V=T TP P PP PPPPPPPTPPTPIN 168
Installing the Data Gathering Agent F5.1sHandler.dll on an IIS 6.0 server.......... 168
Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 7.0 server.......... 170
Installing the Data Gathering Agent F5.1sHandler.dll on an IIS 7.5 server.......... 171

11

Table of Contents

12

Legal Notices and Acknowledgments

Legal Notices

Publication Date

This document was published on February 13, 2017.

Publication Number
MAN-0377-07

Copyright
Copyright © 2013-2017, F5 Networks, Inc. All rights reserved.

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 assumes
no responsibility for the use of this information, nor any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent,
copyright, or other intellectual property right of F5 except as specifically described by applicable user
licenses. F5 reserves the right to change specifications at any time without notice.

Trademarks

AAM, Access Policy Manager, Advanced Client Authentication, Advanced Firewall Manager, Advanced
Routing, AFM, APM, Application Acceleration Manager, Application Security Manager, ARX, AskF5,
ASM, BIG-IP, BIG-1Q, Cloud Extender, CloudFucious, Cloud Manager, Clustered Multiprocessing, CMP,
COHESION, Data Manager, DevCentral, DevCentral [DESIGN], DNS Express, DSC, DSI, Edge Client,
Edge Gateway, Edge Portal, ELEVATE, EM, Enterprise Manager, ENGAGE, F5, F5 [DESIGN], F5 Certified
[DESIGN], F5 Networks, F5 SalesXchange [DESIGN], F5 Synthesis, f5 Synthesis, F5 Synthesis [DESIGN],
F5 TechXchange [DESIGN], Fast Application Proxy, Fast Cache, FirePass, Global Traffic Manager, GTM,
GUARDIAN, iApps, IBR, Intelligent Browser Referencing, Intelligent Compression, IPv6 Gateway,
iControl, iHealth, iQuery, iRules, iRules OnDemand, iSession, L7 Rate Shaping, LC, Link Controller, Local
Traffic Manager, LTM, LineRate, LineRate Systems [DESIGN], LROS, LTM, Message Security Manager,
MSM, OneConnect, Packet Velocity, PEM, Policy Enforcement Manager, Protocol Security Manager,
PSM, Real Traffic Policy Builder, SalesXchange, ScaleN, Signalling Delivery Controller, SDC, SSL
Acceleration, software designed applications services, SDAC (except in Japan), StrongBox, SuperVIP,
SYN Check, TCP Express, TDR, TechXchange, TMOS, TotALL, Traffic Management Operating System,
Traffix Systems, Traffix Systems (DESIGN), Transparent Data Reduction, UNITY, VAULT, vCMP, VE
F5 [DESIGN], Versafe, Versafe [DESIGN], VIPRION, Virtual Clustered Multiprocessing, WebSafe, and
ZoneRunner, are trademarks or service marks of F5 Networks, Inc., in the U.S. and other countries, and
may not be used without F5's express written consent.

All other product and company names herein may be trademarks of their respective owners.

Patents

This product may be protected by one or more patents indicated at:
http://www.f5.com/about/guidelines-policies/patents

http://www.f5.com/about/guidelines-policies/patents

Legal Notices and Acknowledgments

Export Regulation Notice

This product may include cryptographic software. Under the Export Administration Act, the United States
government may consider it a criminal offense to export this product from the United States.

RF Interference Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which
case the user may be required to take adequate measures.

FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device pursuant
to Part 15 of FCC rules. These limits are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This unit generates, uses, and
can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual,
may cause harmful interference to radio communications. Operation of this equipment in a residential area
is likely to cause harmful interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Any modifications to this device, unless expressly approved by the manufacturer, can void the user's authority
to operate this equipment under part 15 of the FCC rules.

Canadian Regulatory Compliance

This Class A digital apparatus complies with Canadian ICES-003.

Standards Compliance

This product conforms to the IEC, European Union, ANSI/UL and Canadian CSA standards applicable to
Information Technology products at the time of manufacture.

Acknowledgments

14

This product includes software developed by Bill Paul.

This product includes software developed by Jonathan Stone.

This product includes software developed by Manuel Bouyer.

This product includes software developed by Paul Richards.

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes software developed by the Politecnico di Torino, and its contributors.

This product includes software developed by the Swedish Institute of Computer Science and its contributors.
This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by the Computer Systems Engineering Group at the Lawrence
Berkeley Laboratory.

This product includes software developed by Christopher G. Demetriou for the NetBSD Project.
This product includes software developed by Adam Glass.
This product includes software developed by Christian E. Hopps.

This product includes software developed by Dean Huxley.

BIG-IP® Local Traffic Manager™: Concepts

This product includes software developed by John Kohl.

This product includes software developed by Paul Kranenburg.

This product includes software developed by Terrence R. Lambert.

This product includes software developed by Philip A. Nelson.

This product includes software developed by Herb Peyerl.

This product includes software developed by Jochen Pohl for the NetBSD Project.

This product includes software developed by Chris Provenzano.

This product includes software developed by Theo de Raadt.

This product includes software developed by David Muir Sharnoff.

This product includes software developed by SigmaSoft, Th. Lockert.

This product includes software developed for the NetBSD Project by Jason R. Thorpe.

This product includes software developed by Jason R. Thorpe for And Communications, http://www.and.com.
This product includes software developed for the NetBSD Project by Frank Van der Linden.
This product includes software developed for the NetBSD Project by John M. Vinopal.

This product includes software developed by Christos Zoulas.

This product includes software developed by the University of Vermont and State Agricultural College and
Garrett A. Wollman.

This product includes software developed by Balazs Scheidler (bazsi@balabit.hu), which is protected under
the GNU Public License.

This product includes software developed by Niels Mueller (nisse@lysator.liu.se), which is protected under
the GNU Public License.

In the following statement, This software refers to the Mitsumi CD-ROM driver: This software was developed
by Holger Veit and Brian Moore for use with 386BSD and similar operating systems. Similar operating
systems includes mainly non-profit oriented systems for research and education, including but not restricted
to NetBSD, FreeBSD, Mach (by CMU).

This product includes software developed by the Apache Group for use in the Apache HTTP server project
(http://www.apache.org/).

This product includes software licensed from Richard H. Porter under the GNU Library General Public
License (© 1998, Red Hat Software), www.gnu.org/copyleft/lgpl.html.

This product includes the standard version of Perl software licensed under the Perl Artistic License (© 1997,
1998 Tom Christiansen and Nathan Torkington). All rights reserved. You may find the most current standard
version of Perl at http://www.perl.com.

This product includes software developed by Jared Minch.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product contains software based on oprofile, which is protected under the GNU Public License.

This product includes RRDtool software developed by Tobi Oetiker (http://www.rrdtool.com/index.html)
and licensed under the GNU General Public License.

This product contains software licensed from Dr. Brian Gladman under the GNU General Public License
(GPL).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

15

Legal Notices and Acknowledgments

16

This product includes Hypersonic SQL.

This product contains software developed by the Regents of the University of California, Sun Microsystems,
Inc., Scriptics Corporation, and others.

This product includes software developed by the Internet Software Consortium.
This product includes software developed by Nominum, Inc. (http://www.nominum.com).

This product contains software developed by Broadcom Corporation, which is protected under the GNU
Public License.

This product contains software developed by MaxMind LLC, and is protected under the GNU Lesser General
Public License, as published by the Free Software Foundation.

This product includes unbound software from NLnetLabs. Copyright ©2007. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of NLnetLabs nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This product includes Intel QuickAssist kernel module, library, and headers software licensed under the
GNU General Public License (GPL).

This product includes software licensed from Gerald Combs (gerald@wireshark.org) under the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or any later
version. Copyright ©1998 Gerald Combs.

This product includes software developed by Thomas Williams and Colin Kelley. Copyright ©1986 - 1993,
1998, 2004, 2007

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation. Permission to modify the
software is granted, but not the right to distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to distribute binaries produced by compiling
modified sources is granted, provided you

1. distribute the corresponding source modifications from the released version in the form of a patch file
along with the binaries,

2. add special version identification to distinguish your version in addition to the base release version
number,

3. provide your name and address as the primary contact for the support of your modified version, and

4. retain our contact information in regard to use of the base software.

BIG-IP® Local Traffic Manager™: Concepts

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions. This software
is provided "as is" without express or implied warranty to the extent permitted by applicable law.

This product includes software developed by Brian Gladman, Worcester, UK Copyright ©1998-2010. All
rights reserved. The redistribution and use of this software (with or without changes) is allowed without
the payment of fees or royalties provided that:

+ source code distributions include the above copyright notice, this list of conditions and the following
disclaimer;

 binary distributions include the above copyright notice, this list of conditions and the following disclaimer
in their documentation.

This software is provided 'as is' with no explicit or implied warranties in respect of its operation, including,
but not limited to, correctness and fitness for purpose.

This product includes software developed by the Computer Systems Engineering Group at Lawrence
Berkeley Laboratory. Copyright ©1990-1994 Regents of the University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: This product includes software developed by the Computer Systems Engineering
Group at Lawrence Berkeley Laboratory.

4. Neither the name of the University nor of the Laboratory may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes software developed by Sony Computer Science Laboratories Inc. Copyright ©
1997-2003 Sony Computer Science Laboratories Inc. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

17

Legal Notices and Acknowledgments

18

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product contains software developed by Google, Inc. Copyright ©2011 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

This product includes software developed by Ian Gulliver ©2006, which is protected under the GNU General
Public License, as published by the Free Software Foundation.

This product includes software developed by Jeremy Ashkenas and DocumentCloud, and distributed under
the MIT license. Copyright © 2010-2013 Jeremy Ashkenas, DocumentCloud.

This product includes gson software, distributed under the Apache License version 2.0. Copyright ©
2008-2011 Google Inc.

This product includes ec2-tools software, copyright © 2008, Amazon Web Services, and licensed under the
Amazon Software License. A copy of the License is located at http://aws.amazon.com/asl/ .

This product includes crypto.js software, copyright © 2009-2013, Jeff Mott, and distributed under the BSD
New license.

Introduction to Local Traffic Manager

What is BIG-IP Local Traffic Manager?

BIG-IP" Local Traffic Manager controls network traffic that comes into or goes out of a local area network
(LAN), including an intranet.

A commonly-used feature of Local Traffic Manager is its ability to intercept and redirect incoming network
traffic, for the purpose of intelligently tuning the load on network servers. However, tuning server load is
not the only type of local traffic management.

Local Traffic Manager includes a variety of features that perform functions such as inspecting and
transforming header and content data, managing SSL certificate-based authentication, and compressing
HTTP responses. In so doing, the BIG-IP system not only directs traffic to the appropriate server resource,
but also enhances network security and frees up server resources by performing tasks that web servers
typically perform.

Note: BIG-IP Local Traffic Manager is one of several products that constitute the BIG-IP product family.
All products in the BIG-IP product family run on the powerful Traffic Management Operating System,
commonly referred to as TMOS".

Timeout settings for connections and sessions

Local Traffic Manager has a number of time-outs that can be set to promote active connection management.
The system manages each connection explicitly by keeping track of a connection in the connection table
while the connection is still active. The connection table contains state information about client-side and
server-side connections, as well as the relationships between them.

Each connection in the connection table consumes system resources to maintain the table entry and monitor
connection status. Local Traffic Manager must determine when a connection is no longer active and then
retire the connection to avoid exhausting critical system resources. Resources such as memory and processor
cycles are at risk if the connection table grows and remains unchecked.

You can also manage the duration of entries in the persistence table when using session persistence.

Connection reaping

Connections that close or reset in a normal way are retired from the connection table automatically. A
significant number of connections, however, often remain idle without closing normally, for any number
of reasons. Consequently, Local Traffic Manager must reap these connections once they have been determined
to be inactive. Reaping is the process of retiring or recycling connections that would otherwise remain idle.

Since you can configure timeout settings in multiple places, it is important to understand that sometimes
more than one timeout setting affects the same connection. The optimal timeout configuration is one that

Introduction to Local Traffic Manager

retains idle connections for an appropriate amount of time (variable by application) before deciding that the
connections are inactive and should be retired, to conserve system resources.

Idle timeout options

Idle connections can be timed out by protocol profiles or SNATs associated with the virtual server handling
the connection. Connections that a virtual server does not manage can be timed out based on SNAT automap
or VLAN group settings.

The shortest timeout value that applies to a connection is the value that always takes effect. In some cases,
however, you might want to change this behavior.

For example, you might have configured a forwarding virtual server that is intended to carry long-standing
connections, and these connections might become idle for long periods of time (such as SSH sessions). In
this case, you can configure a long idle timeout value on the related protocol profile (in this case, TCP).

Idle timeout settings that affect connection reaping

A list of objects containing idle connection timeout settings that affect reaping. For each object type, the
table lists the default value and whether that value is user-configurable.

Configuration Object Types Default in Seconds User-configured?
Fast L4, Fast HTTP, TCP, and 300 Yes

SCTP profiles

UDP profiles 60 Yes

SNAT automap Indefinite No

VLAN group 300 No

Other timeout settings

20

Local Traffic Manager includes two other idle timeout settings, but these settings do not affect connection
reaping. These settings appear in the OneConnect and persistence profile types.

The OneConnect timeout value controls the length of time that an idle server-side connection is available
for re-use; that is, this timeout value might cause the system to close a server-side connection after becoming
idle for a certain period of time. In this case, since that connection was never actively in use, no active
client-side connections are affected, and the system transparently selects or establishes another server-side
connection for new connections. The OneConnect timeout setting need not be coordinated with the idle
timeout settings of other profiles.

Persistence timeout settings are actually idle timeout settings for a session, rather than for a single connection.
Thus, persistence timeout settings should typically be set to a value slightly larger than the applicable
connection idle timeout settings, to allow sessions to continue even if a connection within the session has
expired.

BIG-IP® Local Traffic Manager™: Concepts

Idle timeout settings that do not affect connection reaping

Local Traffic Manager includes two other idle timeout settings, but these settings do not affect connection
reaping. These settings appear in the OneConnect” and persistence profile types. This table shows the
default values for these settings and whether the settings are user-configurable.

Configuration Object Type Default in Seconds User-configured?
OneConnect™ profiles Disabled Yes
Cookie Hash, Destination Address 180 Yes

Affinity, Hash, SIP, Source
Address Affinity, and Universal
persistence profiles

MSRDP and SSL persistence 300 Yes
profiles

About the network map

The BIG-IP Configuration utility includes a feature known as the network map. The network map shows a
summary of local traffic objects, as well as a visual map of the virtual servers, pools, and pool members on
the BIG-IP" system. For both the local traffic summary and the network map, you can customize the display
using a search mechanism that filters the information that you want to display, according to criteria that
you specify. The system highlights in blue all matches from a search operation.

The filtering mechanism

You can filter the results of the network map feature by using the Type and Status lists in the filter bar, as
well as a Search box. With the Search box, you can optionally type a specific string. Figure 1.1 shows the
filtering options on the Network Map screen.

Local Traffic » Metwork fap
O = Hedwork Map

Stalus Ay Stales [0 Type Al Types Search * Search iR yle Defindion (||

.Ugulfhhl Surrirniary | | 5w Blap |

Figure 1: Filtering options on the Network Map screen

When using the Search box, you can specify a text string that you want the system to use in a search operation.
The default is asterisk (*). The settings of the Status and Type fields determine the scope of the search.
The system uses the specified search string to filter the results that the system displays on the screen.

For example, if you constrain the search to include only unavailable nodes whose IP address includes 10.10,
the operation returns those nodes, along with the members of the pool, the pool itself, the associated virtual
server, and any iRules” that you explicitly applied to that virtual server. The system sorts results
alphabetically, by virtual server name.

The system supports searching on names, IP address, and IP address:port combinations, in both IPv4 and
IPv6 address formats. The system processes the string as if an asterisk wildcard character surrounds the
string. For example, you specify 10, the system effectively searches as if you had typed *10*. You can also

21

Introduction to Local Traffic Manager

specifically include the asterisk wildcard character. For example, you can use the following search strings:
10.10.10.*:80,10.10%*, and *: 80. if you specifically include a wildcard character, the system treats
the string accordingly. For example, if you specify 10*, the system assumes you want to search for objects
whose IP addresses begin with 10.

Tip: Browsers have limits as to how much data they can render before they become sluggish and halt
processing. Mapping large configurations might approach those limits; therefore, memory constraints might
prevent the system from producing a network map of the whole configuration. If this might happen, the
system posts an alert indicating that you can use the Network Map summary screen to determine the
complexity of the configuration, which can give you an indication of the size of the resulting map. You can
modify the search criteria to return fewer results, producing a map that does not encounter those limits.

Object summary

The network

22

When you first open the Network Map screen, the screen displays a summary of local traffic objects. This
summary includes the type of objects specified with the search mechanism, the number of each type of
object, and, for each object type, the number of objects with a given status.

The summary displays data for these object types:

e Virtual servers

* Pools

* Pool members
* Nodes

* iRules

Note: A local traffic summary includes only those objects that are referenced by a virtual server. For
example, if you have configured a pool on the system but there is no virtual server that references that pool,
the local traffic summary does not include that pool, its members, or the associated nodes in the summary.

This figure shows an example of a network map screen that summarizes local traffic objects on the system.

Local Traffic « MNetwork Map

Metwork Map

-

Sadus | Ay Status 54 Twoe Al Types hd Search i Search IRule Defintion |—J
Update Summary] [Show Map)

Local Trafic Surmimany

ObjectType Total @ mvailable S Unavailable 4 OMine I Unknown
WVirbudl Sirviers
Poals
Pool Members 1 1 L] o 1]

MNodes

Rules

Figure 2: Local Traffic summary

map display

The network map presents a visual hierarchy of the names and status of virtual servers, pools, pool members,
nodes, and iRules” defined on the system. The map shows all objects in context, starting with the virtual
servers at the top. The Status, Type, and Search settings at the top of the screen determine the objects that
the map includes.

BIG-IP® Local Traffic Manager™: Concepts

When you position the cursor over an object on the map, the system presents hover text containing information
about the object. When you position the cursor over the status icon accompanying an object, the system
presents hover text containing information about the object's status, text which also appears on the pool's
Properties screen.

The system arranges objects in alphabetic order, and organizes the dependent objects in a hierarchy.

Due to the way that a network map presents objects in context, the updated screen also shows objects of
other statuses, types, and names that relate to those objects. This is because a network map always shows
objects in context with the objects that depend on them, and the objects they depend on.

For example, if you have an available virtual server with an available pool and two pool members, one
available and one offline, then selecting Offline from the Status list causes the system to show the offline
pool member in context with the available virtual server and the available pool. This is because the available
virtual server and the available pool depend on the offline pool member.

23

Virtual Servers

Introduction to virtual servers

Virtual servers and virtual addresses are two of the most important components of any BIG-IP® Local Traffic
Manager configuration:

* Avirtual server is a traffic-management object on the BIG-IP system that is represented by an IP address
and a service. Clients on an external network can send application traffic to a virtual server, which then
directs the traffic according to your configuration instructions. Virtual servers typically direct traffic to
a pool of servers on an internal network, by translating the destination IP address in each packet to a
pool member address. Overall, virtual servers increase the availability of resources for processing client
requests.

* A virtual address is the IP address component of a virtual server. For example, if a virtual server’s
destination IP address and service are 10.10.10.2:80, then the IP address 10.10.10.2 is a virtual
address. You do not explicitly create virtual addresses; instead, the BIG-IP system creates a virtual
address when you create a virtual server and specify the destination IP address.

You can create a many-to-one relationship between virtual servers and a virtual address. For example, you
can create the three virtual servers 10.10.10.2:80,10.10.10.2:443,and 10.10.10.2:161 for the
same virtual address, 10.10.10.2.

You can enable and disable a virtual address. When you disable a virtual address, none of the virtual servers
associated with that address can receive incoming network traffic.

About virtual server settings

A virtual server has several settings that you can configure to affect the way that a virtual server manages

traffic. You can also assign certain resources to a virtual server, such as a load balancing pool and various

policies. Together, these properties, settings, and resources represent the definition of a virtual server, and

most have default values. When you create a virtual server, you can either retain the default values or adjust
them to suit your needs.

If you have created a virtual server that is a standard type of virtual server, one of the resources you typically
assign to the virtual server is a default pool. A default pool is the server pool to which Local Traffic Manager
sends traffic if no iRule or policy exists that specifies a different pool. Note that if you plan on using an
iRule or policy to direct traffic to a pool, you must assign the iRule or policy as a resource to the virtual
server.

Types of virtual servers

There are several different types of virtual servers that you can create.

Virtual Servers

Table 1: Types of virtual servers

Type

Description

Standard

Forwarding
(Layer 2)

Forwarding (IP)

Performance
(HTTP)

Performance
(Layer 4)

Stateless

Reject

DHCP Relay

Internal

A Standard virtual server (also known as a load balancing virtual server) directs client
traffic to a load balancing pool and is the most basic type of virtual server. When you
first create the virtual server, you assign an existing default pool to it. From then on, the
virtual server automatically directs traffic to that default pool.

You can set up a Forwarding (Layer 2) virtual server to share the same IP address as a

node in an associated VLAN. To do this, you must perform some additional configuration
tasks. These tasks consist of: creating a VLAN group that includes the VLAN in which
the node resides, assigning a self-IP address to the VLAN group, and disabling the virtual
server on the relevant VLAN.

A Forwarding (IP) virtual server is just like other virtual servers, except that a forwarding
virtual server has no pool members to load balance. The virtual server simply forwards
the packet directly to the destination IP address specified in the client request. When you
use a forwarding virtual server to direct a request to its originally-specified destination
IP address, Local Traffic Manager adds, tracks, and reaps these connections just as with
other virtual servers. You can also view statistics for a forwarding virtual servers.

A Performance (HTTP) virtual server is a virtual server with which you associate a Fast
HTTP profile. Together, the virtual server and profile increase the speed at which the
virtual server processes HTTP requests.

A Performance (Layer 4) virtual server is a virtual server with which you associate a
Fast L4 profile. Together, the virtual server and profile increase the speed at which the
virtual server processes Layer 4 requests.

A stateless virtual server prevents the BIG-IP system from putting connections into the
connection table for wildcard and forwarding destination IP addresses. When creating
a stateless virtual server, you cannot configure SNAT automap, iRules, or port translation,
and you must configure a default load balancing pool. Note that this type of virtual server
applies to UDP traffic only.

A Reject virtual server specifies that the BIG-IP system rejects any traffic destined for
the virtual server IP address.

A DHCP Relay virtual server relays Dynamic Host Control Protocol (DHCP) messages
between clients and servers residing on different IP networks. Known as a DHCP relay
agent, a BIG-IP system with a DHCP Relay type of virtual server listens for DHCP client
messages being broadcast on the subnet and then relays those messages to the DHCP
server. The DHCP server then uses the BIG-IP system to send the responses back to the
DHCEP client. Configuring a DHCP Relay virtual server on the BIG-IP system relieves
you of the tasks of installing and running a separate DHCP server on each subnet.

An internal virtual server is one that can send traffic to an intermediary server for
specialized processing before the standard virtual server sends the traffic to its final
destination. For example, if you want the BIG-IP system to perform content adaptation
on HTTP requests or responses, you can create an internal virtual server that load balances
those requests or responses to a pool of ICAP servers before sending the traffic back to
the standard virtual server.

26

BIG-IP® Local Traffic Manager™: Concepts

About source and destination addresses

There are two distinct types of virtual servers that you can create: virtual servers that listen for a host
destination address and virtual servers that listen for a network destination address. For both types of virtual
servers, you can also specify a source IP address.

About source addresses

When configuring a virtual sever, you can specify an IP address or network from which the virtual server

will accept traffic. For this setting to function properly, you must specify a value other than 0.0.0.0/0 or
::/0 (thatis, any/0, any6/0). To maximize utility of this setting, specify the most specific address prefixes
spanning all customer addresses and no others.

About host destination addresses

A host virtual server represents a specific site, such as an Internet web site or an FTP site, and the virtual
server load balances traffic targeted to content servers that are members of a pool. A host virtual server
provides a level of security, similar to an access control list (ACL), because its destination address includes
a port specification, causing the virtual server to accept only traffic destined for that port.

The IP address that you assign to a host virtual server should match the IP address that Domain Name
System (DNS) associates with the site’s domain name. When the BIG-IP® system receives a connection
request for that site, Local Traffic Manager recognizes that the client’s destination IP address matches the
IP address of the virtual server, and subsequently forwards the client request to one of the content servers
that the virtual server load balances.

About network destination addresses

A network virtual server is a virtual server whose IP address has no bits set in the host portion of the IP
address (that is, the host portion of its IP address is 0). There are two kinds of network virtual servers: those
that direct client traffic based on a range of destination IP addresses, and those that direct client traffic based
on specific destination IP addresses that the BIG-IP system does not recognize. A network virtual server
provides a level of security because its destination network address includes a port specification, causing
the virtual server to accept only traffic destined for that port on the specified network .

When you have a range of destination IP addresses

‘With an IP address whose host bit is set to 0, a virtual server can direct client connections that are destined
for an entire range of IP addresses, rather than for a single destination IP address (as is the case for a host
virtual server). Thus, when any client connection targets a destination IP address that is in the network
specified by the virtual server IP address, Local Traffic Manager (LTM") can direct that connection to one
or more pools associated with the network virtual server.

For example, the virtual server can direct client traffic that is destined for any of the nodes on the
192.168.1.0 network to a specific load balancing pool such as ingress-firewalls. Or, a virtual server could
direct a web connection destined to any address within the subnet 192.168.1.0/24, to the pool
default_webservers.

When you have transparent devices (wildcard virtual servers)

Besides directing client connections that are destined for a specific network or subnet, a network virtual
server can also direct client connections that have a specific destination IP address that the virtual server

27

Virtual Servers

28

does not recognize, such as a transparent device. This type of network virtual server is known as a wildcard
virtual server.

Wildcard virtual servers are a special type of network virtual server designed to manage network traffic
that is targeted to transparent network devices. Examples of transparent devices are firewalls, routers, proxy
servers, and cache servers. A wildcard virtual server manages network traffic that has a destination IP
address unknown to the BIG-IP system.

Unrecognized client IP addresses

A host-type of virtual server typically manages traffic for a specific site. When receiving a connection
request for that site, Local Traffic Manager forwards the client to one of the content servers that the virtual
server load balances.

However, when load balancing transparent nodes, the BIG-IP system might not recognize a client’s destination
IP address. The client might be connecting to an IP address on the other side of the firewall, router, or proxy
server. In this situation, Local Traffic Manager cannot match the client’s destination IP address to a virtual
server IP address.

Wildcard network virtual servers solve this problem by not translating the incoming IP address at the virtual
server level on the BIG-IP system. For example, when Local Traffic Manager does not find a specific virtual
server match for a client’s destination IP address, LTM matches the client’s destination IP address to a
wildcard virtual server, designated by an IP address of 0.0.0.0. Local Traffic Manager then forwards the
client’s packet to one of the firewalls or routers that the wildcard virtual server load balances, which in turn
forwards the client’s packet to the actual destination IP address.

Default and port-specific wildcard servers

There are two kinds of wildcard virtual servers that you can create:

Default wildcard virtual servers
A default wildcard virtual server is a wildcard virtual server that uses port 0 and handles traffic for all
services. A wildcard virtual server is enabled for all VLANs by default. However, you can specifically
disable any VLANS that you do not want the default wildcard virtual server to support. Disabling VLANs
for the default wildcard virtual server is done by creating a VLAN disabled list. Note that a VLAN
disabled list applies to default wildcard virtual servers only. You cannot create a VLAN disabled list
for a wildcard virtual server that is associated with one VLAN only.

Port-specific wildcard virtual servers
A port-specific wildcard virtual server handles traffic only for a particular service, and you define it
using a service name or a port number. You can use port-specific wildcard virtual servers for tracking
statistics for a particular type of network traffic, or for routing outgoing traffic, such as HTTP traffic,
directly to a cache server rather than a firewall or router.

If you use both a default wildcard virtual server and port-specific wildcard virtual servers, any traffic that
does not match either a standard virtual server or one of the port-specific wildcard virtual servers is handled
by the default wildcard virtual server.

We recommend that when you define transparent nodes that need to handle more than one type of service,
such as a firewall or a router, you specify an actual port for the node and turn off port translation for the
virtual server.

Multiple wildcard servers

You can define multiple wildcard virtual servers that run simultaneously. Each wildcard virtual server must
be assigned to an individual VLAN, and therefore can handle packets for that VLAN only.

In some configurations, you need to set up a wildcard virtual server on one side of the BIG-IP system to
load balance connections across transparent devices. You can create another wildcard virtual server on the

BIG-IP® Local Traffic Manager™: Concepts

other side of the BIG-IP system to forward packets to virtual servers receiving connections from the
transparent devices and forwarding them to their destination.

About route domain IDs

Whenever you configure the Source and Destination settings on a virtual server, the BIG-IP system requires
that the route domain IDs match, if route domain IDs are specified. To ensure that this requirement is met,
the BIG-IP system enforces specific rules, which vary depending on whether you are modifying an existing
virtual server or creating a new virtual server.

Table 2: Modifying an existing virtual server

User action Result

In the destination address, you The system automatically changes the route domain ID on the source
change an existing route domain address to match the new destination route domain ID.
ID.

In the source address, you change If the new route domain ID does not match the route domain ID in the
an existing route domain ID. destination address, the system displays an error message stating that
the two route domain IDs must match.

Table 3: Creating a new virtual server

User action Result

You specify a destination IP The source IP address defaults to 0.0.0.0 and inherits the route
address only,with a route domain domain ID from the destination IP address.
ID, and do not specify a source IP

address.

You specify both source and The BIG-IP system uses the default route domain.

destination addresses but no route

domain IDs.

You specify both source and The BIG-IP system verifies that both route domain IDs match.

destination addresses and a route Otherwise, the system displays an error message.
domain ID on each of the IP
addresses.

You specify both source and The system verifies that the specified route domain ID matches the ID
destination addresses and a route of the default route domain. Specifically, when one address lacks an
domain ID on one of the addresses, ID, the only valid configuration is one in which the ID specified on
but exclude an ID from the other the other address is the ID of a default route domain. Otherwise, the
address. system displays an error message.

About destination service ports

Status notification to virtual addresses

You can configure a virtual server so that the status of the virtual server contributes to the associated virtual
address status. When disabled, the status of the virtual server does not contribute to the associated virtual

29

Virtual Servers

address status. This status, in turn, affects the behavior of the system when you enable route advertisement
of virtual addresses.

About profiles for traffic types

Not only do virtual servers distribute traffic across multiple servers, they also treat varying types of traffic
differently, depending on your traffic-management needs. For example, a virtual server can enable
compression on HTTP request data as it passes through the BIG-IP system, or decrypt and re-encrypt SSL
connections and verify SSL certificates. For each type of traffic destined for a specific virtual server, the
virtual server can apply an entire group of settings (known as a profile) to affect the way that the BIG-IP
system manages that traffic type.

In addition to compression and SSL profiles, you can configure a virtual server to apply profiles such as
TCP, UDP, SPDY, SIP, FTP, and many more.

About VLAN and tunnel assignment

When you configure a virtual server, you can specify one or more VLANS, tunnels, or both, using the vLAN
and Tunnel Traffic and VLANs and Tunnels settings. Configuring this feature specifies the VLANs
or tunnels from which the virtual server will accept traffic. In a common configuration, the VLANs and
tunnels selected reside on the external network.

About source address translation (SNATS)

When the default route on the servers does not route responses back through the BIG-IP system, you can
create a secure network address translation (SNAT). A secure network address translation (SNAT) ensures
that server responses always return through the BIG-IP® system. You can also use a SNAT to hide the
source addresses of server-initiated requests from external devices.

For inbound connections from a client, a SNAT translates the source IP address within packets to a BIG-IP
system IP address that you or the BIG-IP system defines. The destination node then uses that new source
address as its destination address when responding to the request.

For outbound connections, SNATSs ensure that the internal IP address of the server node remains hidden to
an external host when the server initiates a connection to that host.

If you want the system to choose a SNAT translation address for you, you can select the Auto Map feature.
If you prefer to define your own address, you can create a SNAT pool and assign it to the virtual server.

Important: F5 recommends that before implementing a SNAT, you understand network address translation
(NAT).

About bandwidth control

You can specify an existing static bandwidth control policy for the system to use to enforce a throughput
policy for incoming network traffic. A static bandwidth control policy controls the aggregate rate for a
group of applications or a network path. The bandwidth control policy enforces the total amount of bandwidth
that can be used, specified as the maximum rate of the resource you are managing. The rate can be the total
bandwidth of the BIG-IP® device, or it might be a group of traffic flows.

30

BIG-IP® Local Traffic Manager™: Concepts

About traffic classes

When you create or modify a virtual server, you can assign one or more existing traffic classes to the virtual
server. A traffic class allows you to classify traffic according to a set of criteria that you define, such as
source and destination IP addresses. Traffic classes define not only classification criteria, but also a
classification ID. Once you have defined the traffic class and assigned the class to a virtual server, the
BIG-IP system associates the classification ID to each traffic flow. In this way, the BIG-IP system can
regulate the flow of traffic based on that classification.

When attempting to match traffic flows to a traffic class, the BIG-IP system uses the most specific match
possible.

About connection and rate limits

A virtual server, pool member, or node can prevent an excessive number of connection requests, such as
during a Denial of Service (DoS) attack or during a high-demand shopping event. To ensure the availability
of a virtual server, pool member, or node, you can use the BIG-IP* Local Traffic Manager to manage the
total number of connections and the rate at which connections are made.

When you specify a connection limit, the system prevents the total number of concurrent connections to
the virtual server, pool member, or node from exceeding the specified number.

When you specify a connection rate limit, the system controls the number of allowed new connections per
second, thus providing a manageable increase in connections without compromising availability.

About connection and persistence mirroring

BIG-IP"” system redundancy includes the ability for a device to mirror connection and persistence information
to another device, to prevent interruption in service during failover. The BIG-IP system mirrors connection
and persistence data over TCP port 1028 with every packet or flow state update.

Important: Connection mirroring only functions between devices that reside on identical hardware platforms.

Connection mirroring operates at the traffic group level. That is, each device in a device group has a specific
mirroring peer device for each traffic group. The mirroring peer device is the traffic group's next-active
device.

For example, if device Bigip A is active for traffic group traffic-group-1, and the next-active device
for that traffic group is Bigip_C, then the traffic group on the active device mirrors its in-process connections
to traffic-group-1onBigip C.

If Bigip A becomes unavailable and failover occurs, traffic-group-1 on Bigip C becomes active
and continues the processing of any current connections.

Note: The BIG-IP system can mirror connections for as many as 15 active traffic groups simultaneously.

About destination address and port translation
When you enable address translation on a virtual server, the BIG-IP system translates the destination address

of the virtual server to the node address of a pool member. When you disable address translation, the system
uses the virtual server destination address without translation. The default is enabled.

31

Virtual Servers

When you enable port translation on a virtual server, the BIG-IP system translates the port of the virtual
server. When you disable port translation, the system uses the port without translation. Turning off port
translation for a virtual server is useful if you want to use the virtual server to load balance connections to
any service. The default is enabled.

About source port preservation

On a virtual server, you can specify whether the BIG-IP system preserves the source port of the connection.
You can instruct the BIG-IP system to either preserve the source port in certain or all cases, or change the
source port for all connections. The default behavior is to attempt to preserve the source port but use a
different port if the source port from a particular SNAT is already in use.

Alternatively, you can instruct the system to always preserve the source port. In this case, if the port is in
use, the system does not process the connection. F5 Networks recommends that you restrict use of this
setting to cases that meet at least one of the following conditions:

« The port is configured for UDP traffic.

+ The system is configured for nPath routing or is running in transparent mode (that is, there is no translation
of any other Layer 3 or Layer 4 field).

* There is a one-to-one relationship between virtual IP addresses and node addresses, or clustered
multi-processing (CMP) is disabled.

Instructing the system to change instead of preserve the source port of the connection is useful for obfuscating
internal network addresses.

About clone pools

You use a clone pool when you want to configure the BIG-IP system to send traffic to a pool of intrusion

detection systems (IDSs). An intrusion detection system (IDS) is a device that monitors inbound and outbound
network traffic and identifies suspicious patterns that might indicate malicious activities or a network attack.
You can use the clone pool feature of a BIG-IP system to copy traffic to a dedicated IDS or a sniffer device.

Important: A clone pool receives all of the same traffic that the load-balancing pool receives.

To configure a clone pool, you first create the clone pool of IDS or sniffer devices and then assign the clone
pool to a virtual server. The clone pool feature is the recommended method for copying production traffic
to IDS systems or sniffer devices. Note that when you create the clone pool, the service port that you assign
to each node is irrelevant; you can choose any service port. Also, when you add a clone pool to a virtual
server, the system copies only new connections; existing connections are not copied.

You can configure a virtual server to copy client-side traffic, server-side traffic, or both:

* A client-side clone pool causes the virtual server to replicate client-side traffic (prior to address translation)
to the specified clone pool.

* A server-side clone pool causes the virtual server to replicate server-side traffic (after address translation)
to the specified clone pool.

You can configure an unlimited number of clone pools on the BIG-IP system.

About auto last hop

32

When you enable the Auto Last Hop setting, the BIG-IP system can send any return traffic to the MAC
address that transmitted the request, even if the routing table points to a different network or interface. As

BIG-IP® Local Traffic Manager™: Concepts

a result, the system can send return traffic to clients even when there is no matching route, such as when
the system does not have a default route configured and the client is located on a remote network.

This setting is also useful when the system is load balancing transparent devices that do not modify the
source IP address of the packet. Without the Auto Last Hop setting enabled, the system could return
connections to a different transparent node, resulting in asymmetric routing.

You can configure this setting globally and on an object level. You set the global Auto Last Hop value on
the System >> Configuration >> Local Traffic >> General screen. In this case, users typically retain the
default setting, Enabled. When you configure Auto Last Hop at the object level with a value other than
Default, the value you configure takes precedence over the global setting. This enables you to configure
Auto Last Hop on a per-pool member basis. The default value for the virtual server Auto Last Hop setting
is Default, which causes the system to use the global Auto Last Hop setting to send back the request.

About NAT64

You can instruct the BIG-IP system to allow IPv6 hosts to communicate with [Pv4 servers. This setting is
disabled by default.

Virtual server resources

When you create a virtual server, one of the resources that you can specify for a virtual server to use is a
default server pool that you want to serve as the destination for any traffic coming from that virtual server.
The system uses this pool, unless you have specified a different pool in another configuration object such
as an iRule.

You can also assign other resources to a virtual server, such as iRules, policies, and persistence profiles.

About virtual address settings

A virtual address has settings that you can configure to affect the way the BIG-IP system manages traffic
destined for that virtual address. When the system creates a virtual address, you can either retain the default
values or adjust them to suit your needs.

About automatic deletion

About traffic

You can enable an Auto Delete setting on a virtual address so that BIG-IP system automatically deletes the
virtual address last associated virtual server is deleted. If you disable this setting, the system retains the
virtual address, even when all associated virtual servers have been deleted. The default value is enabled.

groups

If you want the virtual address to be a floating IP address, that is, an address shared between two or more
BIG-IP devices in a device group, you can assign a floating traffic group to the virtual address. A floating
traffic group causes the virtual address to become a floating self IP address. A floating virtual address
ensures that application traffic reaches its destination when the relevant BIG-IP device becomes unavailable.

33

Virtual Servers

If you want the virtual address to be a static (non-floating) IP address (used mostly for standalone devices),
you can assign a non-floating traffic group to the virtual address. A non-floating traffic group causes the
virtual address to become a non-floating self IP address.

About route advertisement

You can enable route advertisement for a specific virtual address. When you enable route advertisement,
the BIG-IP system advertises routes to the virtual address for the purpose of dynamic routing. The system
can advertise a route to the virtual address under any one of these conditions:

* When any virtual server is available. Additionally, when the ICMP Echo setting is set to Selective, the
BIG-IP system sends an ICMP echo response for a request sent to the virtual address, if one or more
virtual severs associated with the virtual address is in an Up or Unknown state.

* When all virtual servers are available. Additionally, when the ICMP Echo setting is set to Selective,
the BIG-IP system always sends an ICMP echo response for a request sent to the virtual address, but
only when all virtual servers are available.

» Always advertises the route regardless of the virtual servers available. Additionally, when the ICMP
Echo setting is set to Selective, the BIG-IP system always sends an ICMP echo response for a request
sent to the virtual address, regardless of the state of any virtual servers associated with the virtual address.

About ARP and virtual addresses

Whenever the system creates a virtual address, Local Traffic Manager internally associates the virtual
address with a MAC address. This in turn causes the BIG-IP® system to respond to Address Resolution
Protocol (ARP) requests for the virtual address, and to send gratuitous ARP requests and responses with
respect to the virtual address. As an option, you can disable ARP activity for virtual addresses, in the rare
case that ARP activity affects system performance. This most likely occurs only when you have a large
number of virtual addresses defined on the system.

About ICMP echo responses

You can control whether the BIG-IP system sends responses to Internet Control Message Protocol (ICMP)
echo requests, on a per-virtual address basis. Specifically, you can:

+ Disable ICMP echo responses. This causes the BIG-IP system to never send an ICMP echo response
for ICMP request packets sent to the virtual address, regardless of the state of any virtual servers associated
with the virtual address.

* Enable ICMP echo responses. This causes the BIG-IP system to always send an ICMP echo response
for ICMP request packets sent to the virtual address, regardless of the state of any virtual servers associated
with the virtual address.

» Selectively enable ICMP echo responses. This causes the BIG-IP system to internally enable or disable
ICMP responses for the virtual address based on node status for any associated virtual servers. This
value affects the behavior of the system in different ways, depending on the value of the Advertise
Route setting.

34

BIG-IP® Local Traffic Manager™: Concepts

Virtual server and virtual address status

At any time, you can determine the status of a virtual server or virtual address, using the BIG-IP Configuration
utility. You can find this information by displaying the list of virtual servers or virtual addresses and viewing
the Status column, or by viewing the Availability property of the object.

The BIG-IP Configuration utility indicates status by displaying one of several icons, distinguished by shape
and color:

» The shape of the icon indicates the status that the monitor has reported for that node.
* The color of the icon indicates the actual status of the node.

Clustered multiprocessing

The BIG-IP" system includes a performance feature known as Clustered Multiprocessing ", or CMP®. CMP
is a traffic acceleration feature that creates a separate instance of the Traffic Management Microkernel
(TMM) service for each central processing unit (CPU) on the system. When CMP is enabled, the workload
is shared equally among all CPUs.

Whenever you create a virtual server, the BIG-IP system automatically enables the CMP feature. When
CMP is enabled, all instances of the TMM service process application traffic.

When you view standard performance graphs using the BIG-IP Configuration utility, you can see multiple
instances of the TMM service (tmm0, tmm1, and so on).

When CMP is enabled, be aware that:

* While displaying some statistics individually for each TMM instance, the BIG-IP system displays other
statistics as the combined total of all TMM instances.

+ Connection limits for a virtual server with CMP enabled are distributed evenly across all instances of
the TMM service.

Note: F5 recommends that you disable the CMP feature if you set a small connection limit on pool members
(for example, a connection limit of 2 for the 8400 platform or 4 for the 8800 platform).

You can enable or disable CMP for a virtual server, or you can enable CMP for a specific CPU.

35

Local Traffic Policies

About local traffic policy matching

BIG-IP® local traffic policies comprise a prioritized list of rules that match defined conditions and run
specific actions, which you can assign to a virtual server that directs traffic accordingly. For example, you
might create a policy that determines whether a client's browser is a Chrome browser and adds an
Alternative-Protocols attribute to the header, so that subsequent requests from the Chrome browser
are directed to a SPDY virtual server. Or you might create a policy that determines whether a client is using
a mobile device, and then redirects its requests to the applicable mobile web site's URL.

About strategies for local traffic policy matching

Each BIG-IP® local traffic matching policy requires a matching strategy to determine the rule that applies
if more than one rule matches.

The BIG-IP policies provide three policy matching strategies: a first-match, best-match, and all-match
strategy. Each policy matching strategy prioritizes rules according to the rule's position within the Rules
list.

Note: A rule without conditions becomes the default rule in a best-match or first-match strategy, when the
rule is the last entry in the Rules list.

Table 4: Policy matching strategies

Matching strategy Description

First-match strategy A first-match strategy starts the actions for the first rule in the Rules list that matches.

Best-match strategy A best-match strategy selects and starts the actions of the rule in the Rules list with
the best match, as determined by the following factors.

* The number of conditions and operands that match the rule.
* The length of the matched value for the rule.
» The priority of the operands for the rule.

Note: In a best-match strategy, when multiple rules match and specify an action,
conflicting or otherwise, only the action of the best-match rule is implemented. A

best-match rule can be the lowest ordinal, the highest priority, or the first rule that
matches in the Rules list.

All-match strategy ~ An all-match strategy starts the actions for all rules in the Rules list that match.

Note: In an all-match strategy, when multiple rules match, but specify conflicting
actions, only the action of the best-match rule is implemented. A best-match rule
can be the lowest ordinal, the highest priority, or the first rule that matches in the
Rules list.

Local Traffic Policies

Local traffic policy matching Requires profile settings

This table summarizes the profile settings that are required for local traffic policy matching.

Requires Setting Description

http Specifies that the policy matching requires an HTTP profile.

ssl Specifies that the policy matching requires a Client SSL profile.
tep Specifies that the policy matching requires a TCP profile.

Local traffic policy matching Controls settings

This table summarizes the controls settings that are required for local traffic policy matching.

Controls Setting Description

acceleration Provides controls associated with acceleration functionality.
caching Provides controls associated with caching functionality.
classification Provides controls associated with classification.
compression Provides controls associated with HTTP compression.
forwarding Provides controls associated with forwarding functionality.

request-adaptation Provides controls associated with request-adaptation functionality.

response-adaptation Provides controls associated with response-adaptation functionality.

server-ssl Provides controls associated with server-ssl functionality.

About rules for local traffic policy matching

BIG-IP” local traffic policy rules match defined conditions and start specific actions. You can create a
policy with rules that are as simple or complex as necessary, based on the passing traffic. For example, a
rule might simply determine that a client's browser is a Chrome browser that is not on an administrator
network. Or a rule might determine that a request URL starts with /video, that the client is a mobile device,
and that the client's subnet does not match 172.27.56.0/24.

About conditions for local traffic policy matching

38

The conditions for a local traffic policy rule define the necessary criteria that must be met in order for the
rule's actions to be applied. For example, a policy might include the following conditions, which, when met
by a request, would allow the rule's specified actions to be applied.

Condition Setting
Operand http-host
Event request

BIG-IP® Local Traffic Manager™: Concepts

Condition Setting

Selector all

Condition equals

Values Wwww.Siterequest.com

Local traffic policy matching Conditions operands

This table summarizes the operands for each condition used in policy matching.

Operand Type Valid Events Selectors and Description
Parameters
client-ssl string/number * request + cipher Requires a Client SSL profile for
+ response < cipher-bits policy matching.
* protocol
http-basic-auth string * request * password Returns <username>:
* username <password> or parts of it.
http-cookie string * request « all Returns the value of a particular
cookie or cookie attribute.
* name
http-header string * request o all Returns the value of a particular
* response header.

* name (required)

http-host string/number ¢ request « all Provides all or part of the HTTP
« host Host header.
* port
http-method string * request « all Provides the HTTP method.
http-referer string/number ¢ request o all Provides all or part of the HTTP
e extension Referer header.
* host
* path

* path-segment
* index (required)

* port
* query-parameter

* name (required)
* query-string

¢ scheme

* unnamed-query-
parameter

* index (required)

39

Local Traffic Policies

40

Operand Type Valid Events
http-set-cookie string * response
http-status string/number ¢ response
http-uri string/number ¢ request
http-version string/number ¢ request

* response
tep number * request

* response

Selectors and
Parameters

domain

* name (required)
expiry

* name (required)
path

* name (required)
value

* name (required)
version

* name (required)

all
code
text

all

extension
host

path
path-segment

* index (required)
port
query-parameter
* name (required)
query-string

scheme

unnamed-query-
parameter

* index (required)

response

« all

* major

* minor

* protocol
mss

e internal true

port

e internal true
¢ local true

Description

Sets the selected setting of a
particular cookie or cookie
attribute.

Returns the HTTP status line or
part of it.

Provides all or part of the request
URL

Provides HTTP/1.1 a number.

Requires a TCP profile for policy
matching.

BIG-IP® Local Traffic Manager™: Concepts

Operand

Type

Valid Events Selectors and

Parameters

* route-domain

¢ internal true

e rtt

e internal true

¢ vlan

e internal true

e vlan-id

¢ internal true

Description

About actions for a local traffic policy rule

The actions for a local traffic policy rule determine how traffic is handled. For example, actions for a rule
could include the following ways of handling traffic.

Blocking traffic
Rewriting a URL
Logging traffic
Adding a specific header
Redirecting traffic to a different pool member

Selecting a specific Web Application policy

Local traffic policy matching Actions operands

This table summarizes the actions associated with the conditions of the rule used in policy matching.

Target Type Valid Events Action
acceleration string/number request * disable
* enable
cache string request + disable
response * enable
* pin true
compress string request + disable
response * enable
decompress string request * disable
response * enable
forward string request * reset
* select

* clone-pool

41

Local Traffic Policies

Target

http-cookie

http-header

http-host

http-referer

http-reply

http-set-cookie

42

Type

string

string/number

string

string

string

string/number

Valid Events
* request
* request

* response

* request
* request
* request

* response

¢ response

Action
* member
* nexthop
* node
* pool
* rateclass
* snat
* snatpool
* vlan
* vlan-id

* insert

* name (required)
* value (required)

¢ remove

* name (required)

* insert

* name (required)
* value (required)

* remove
* name (required)
* replace

* name (required)
* value (required)

* replace
¢ value
* insert

* value (required)

* remove
* replace

¢ value
¢ redirect

* location (required)

* insert

* name (required)
* domain

* path

+ value (required)

¢ remove

BIG-IP® Local Traffic Manager™: Concepts

Target

http-uri

log

pem

request-adapt

response-adapt

server-ssl

tcl

tcp-nagle

Type

string/number

string/number

string/number

string/number

string/number

string/number

string/number

string/number

Valid Events

¢ response

* request
* response

* request
* response

* request
* response

* request
* response

* request

* request
* response

* request

Action

* name (required)

* replace
* path
* query-string
* value

* write

* message (required)

* classify

+ application

* category
e defer
* protocol

* disable

¢ enable

* disable

¢ enable

* disable

e enable

e set-variable

* name (required)
* expression (required)

* disable
e enable

43

Nodes

About nodes

A node is a logical object on the BIG-IP® Local Traffic Manager system that identifies the IP address of
a physical resource on the network. You can explicitly create a node, or you can instruct Local Traffic
Manager (LTM®) to automatically create one when you add a pool member to a load balancing pool.

The difference between a node and a pool member is that a node is designated by the device’s IP address
only (10.10.10.10), while designation of a pool member includes an IP address and a service (such as
10.10.10:8).

A primary feature of nodes is their association with health monitors. Like pool members, nodes can be
associated with health monitors as a way to determine server status. However, a health monitor for a pool
member reports the status of a service running on the device, whereas a health monitor associated with a
node reports status of the device itself.

Nodes are the basis for creating a load balancing pool. For any server that you want to be part of a load
balancing pool, you must first create a node, that is, designate that server as a node. After designating the
server as node, you can add the node to a pool as a pool member. You can also associate a health monitor
with the node, to report the status of that server.

About the node address setting

This setting specifies the IP address of the node. If you are using a route domain other than route domain
0, you can append a route domain ID to this node address. For example, if the node address applies to route
domain 1, then you can specify a node address of 10.10.10.10. : 31.

About health monitor association

Using Local Traffic Manager , you can monitor the health or performance of your nodes by associating
monitors with those nodes. This is similar to associating a monitor with a load balancing pool, except that
in the case of nodes, you are monitoring the IP address, whereas with pools, you are monitoring the services
that are active on the pool members.

Local Traffic Manager (LTM") contains many different pre-configured monitors that you can associate
with nodes, depending on the type of traffic you want to monitor. You can also create your own custom
monitors and associate them with nodes. The only pre-configured monitors that are not available for
associating with nodes are monitors that are specifically designed to monitor pools or pool members rather
than nodes.

Note: Any monitor that you associate with a node must reside either in partition Common or in the partition
that contains the node.

Nodes

There are two ways that you can associate a monitor with a node: by assigning the same monitor (that is, a
default monitor) to multiple nodes at the same time, or by explicitly associating a monitor with each node
as you create it.

About monitors and automatic node creation

If you create a pool member without first creating the parent node, Local Traffic Manager automatically
creates the parent node for you. Fortunately, you can configure Local Traffic Manager (LTM®) to
automatically associate one or more monitor types with every node that LTM creates. This eliminates the
task of having to explicitly choose monitors for each node.

Keep the following in mind when working with default monitors:

+ If a user with permission to manage objects in partition Common disables a monitor that is designated
as the default monitor for nodes (such as the i cmp monitor), this affects all nodes on the system. Ensure
that the default monitor for nodes always resides in partition Common.

» To specify default monitors, you must have the Administrator user role assigned to your user account.

« If all nodes reside in the same partition, the default monitor must reside in that partition or in partition
Common. If nodes reside in separate partitions, then the default monitor must reside in partition Common.

About monitors and explicit node creation

Sometimes, you might want to explicitly create a node, rather than having Local Traffic Manager create
the node automatically. In this case, when you create the node, you can either associate non-default monitors
with the node, or associate the default monitors with the node.

About monitor removal

You can remove a monitor that is explicitly associated with a specific node. When removing a monitor
associated with a specific node, you can either remove the monitor association altogether, or change it so
that only the default monitor is associated with the node.

Alternatively, you can remove any default monitors, that is, monitors that Local Traffic Manager
automatically associates with any node that you create.

About node availability

You can specify the minimum number of health monitors that must report a node as being available to
receive traffic before Local Traffic Manager reports that node as being in an up state.

46

BIG-IP® Local Traffic Manager™: Concepts

About the ratio weight setting

When you are using the Ratio load balancing method, you can assign a ratio weight to each node in a pool.
LTM" uses this ratio weight to determine the correct node for load balancing.

Note that at least one node in the pool must have a ratio value greater than 1. Otherwise, the effect equals
that of the Round Robin load balancing method.

About the connection rate limit setting

The connection rate limit setting specifies the maximum rate of new connections allowed for the node.
When you specify a connection rate limit, the system controls the number of allowed new connections per
second, thus providing a manageable increase in connections without compromising availability. The default
value of 0 specifies that there is no limit on the number of connections allowed per second.

About node state

A node must be enabled in order to accept traffic. When a node is disabled, Local Traffic Manager allows
existing connections to time out or end normally. In this case, the node can accept new connections only if
the connections belong to an existing persistence session. (In this way, a disabled node differs from a node
that is set to down. The down node allows existing connections to time out, but accepts no new connections
whatsoever.)

About node status

At any time, you can determine the status of a node, using the BIG-IP Configuration utility. You can find
this information by displaying the list of nodes and viewing the Status column, or by viewing the Availability
property of a node.

The BIG-IP Configuration utility indicates status by displaying one of several icons, distinguished by shape
and color:

* The shape of the icon indicates the status that the monitor has reported for that node.
* The color of the icon indicates the actual status of the node.

Tip: You can manually set the availability of a node with the Manual Resume attribute of the associated
health monitor.

47

Pools

Introduction to pools

In a typical client-server scenario, a client request goes to the destination IP address specified in the header
of the request. For sites with a large amount of incoming traffic, the destination server can quickly become
overloaded as it tries to service a large number of requests. To solve this problem, BIG-IP® Local Traffic
Manager distributes client requests to multiple servers instead of to the specified destination IP address
only. You configure Local Traffic Manager to do this when you create a load balancing pool.

About load balancing pools

A load balancing pool is a logical set of devices, such as web servers, that you group together to receive
and process traffic. Instead of sending client traffic to the destination IP address specified in the client
request, Local Traffic Manager sends the request to any of the servers that are members of that pool. This
helps to efficiently distribute the load on your server resources.

When you create a pool, you assign pool members to the pool. A pool member is a logical object that
represents a physical node (server), on the network. You then associate the pool with a virtual server on the
BIG-IP” system. Once you have assigned a pool to a virtual server, Local Traffic Manager (LTM") directs
traffic coming into the virtual server to a member of that pool. An individual pool member can belong to
one or multiple pools, depending on how you want to manage your network traffic.

The specific pool member to which Local Traffic Manager chooses to send the request is determined by
the load balancing method that you have assigned to that pool. A load balancing method is an algorithm
that LTM uses to select a pool member for processing a request. For example, the default load balancing
method is Round Robin, which causes Local Traffic Manager to send each incoming request to the next

available member of the pool, thereby distributing requests evenly across the servers in the pool.

Pool features

You can configure Local Traffic Manager (LTM) to perform a number of different operations for a pool.
For example, you can:

* Associate health monitors with pools and pool members
* Enable or disable SNAT connections

* Rebind a connection to a different pool member if the originally-targeted pool member becomes
unavailable

» Specify a load balancing algorithm for a pool
+ Set the Quality of Service or Type of Service level within a packet
* Assign pool members to priority groups within a pool

You use the BIG-IP Configuration utility to create a load balancing pool, or to modify a pool and its members.
When you create a pool, LTM® automatically assigns a group of default settings to that pool and its members.

Pools

You can retain these default settings or modify them. Also, you can modify the settings at a later time, after
you have created the pool.

About health monitor association

Health monitors are a key feature of Local Traffic Manager . Health monitors help to ensure that a server
is in an up state and able to receive traffic. When you want to associate a monitor with an entire pool of
servers, you do not need to explicitly associate that monitor with each individual server. Instead, you can
simply assign the monitor to the pool itself. Local Traffic Manager then automatically monitors each member
of the pool.

Local Traffic Manager contains many different pre-configured monitors that you can associate with pools,
depending on the type of traffic you want to monitor. You can also create your own custom monitors and
associate them with pools. The only monitor types that are not available for associating with pools are
monitors that are specifically designed to monitor nodes and not pools or pool members. That is, the
destination address in the monitor specifies an IP address only, rather than an IP address and a service port.
These monitor types are:

- ICMP

e TCP Echo

* Real Server

« SNMP DCA

* SNMP DCA Base
« WMI

With Local Traffic Manager, you can configure your monitor associations in many useful ways:

* You can associate a health monitor with an entire pool instead of an individual server. In this case, Local
Traffic Manager automatically associates that monitor with all pool members, including those that you
add later. Similarly, when you remove a member from a pool, Local Traffic Manager no longer monitors
that server.

* When a server that is designated as a pool member allows multiple processes to exist on the same IP
address and port, you can check the health or status of each process. To do this, you can add the server
to multiple pools, and then within each pool, associate a monitor with the that server. The monitor you
associate with each server checks the health of the process running on that server.

* When associating a monitor with an entire pool, you can exclude an individual pool member from being
associated with that monitor. In this case, you can associate a different monitor for that particular pool
member, or you can exclude that pool member from health monitoring altogether. For example, you can
associate pool members A, B, and D with the ht tp monitor, while you associate pool member C with
the https monitor.

* You can associate multiple monitors with the same pool. For instance, you can associate both the http
and https monitors with the same pool.

Pool member availability
You can specify a minimum number of health monitors. Before Local Traffic Manager can report the pool

member as being in an up state, this number of monitors, at a minimum, must report a pool member as
being available to receive traffic.

50

BIG-IP® Local Traffic Manager™: Concepts

Secure network address translations (SNATs) and network address translations (NATS)

When configuring a pool, you can specifically disable any secure network address translations (SNATS) or
network address translations (NATSs) for any connections that use that pool. By default, these settings are
enabled. You can change this setting on an existing pool by displaying the Properties screen for that pool.

One case in which you might want to configure a pool to disable SNAT or NAT connections is when you
want the pool to disable SNAT or NAT connections for a specific service. In this case, you could create a
separate pool to handle all connections for that service, and then disable the SNAT or NAT for that pool.

Action when a service becomes unavailable

You can specify the action that you want Local Traffic Manager to take when the service on a pool member
becomes unavailable.

Possible actions are:

* None. This is the default action.

« The BIG-IP" system sends an RST (TCP-only) or ICMP message.
* Local Traffic Manager simply cleans up the connection.

* Local Traffic Manager selects a different node.

You should configure the system to select a different node in certain cases only, such as:

* When the relevant virtual server is a Performance (Layer 4) virtual server with address translation
disabled.

* When the relevant virtual server’s Protocol setting is set to UDP.

* When the pool is a gateway pool (that is, a pool or routers)

Slow ramp time

When you take a pool member offline, and then bring it back online, the pool member can become overloaded
with connection requests, depending on the load balancing method for the pool. For example, if you use
the Least Connections load balancing method, the system sends all new connections to the newly-enabled
pool member (because, technically, that member has the least amount of connections).

With the slow ramp time feature, you can specify the number of seconds that the system waits before sending
traffic to the newly-enabled pool member. The amount of traffic is based on the ratio of how long the pool
member is available compared to the slow ramp time, in seconds. Once the pool member is online for a
time greater than the slow ramp time, the pool member receives a full proportion of the incoming traffic.

Type of Service (ToS) level
Another pool feature is the Type of Service (ToS) level. The oS level is one means by which network
equipment can identify and treat traffic differently based on an identifier.

As traffic enters the site, Local Traffic Manager can set the ToS level on a packet. Using the IP ToS to
Server ToS level that you define for the pool to which the packet is sent. Local Traffic Manager can apply
an iRule and send the traffic to different pools of servers based on that ToS level.

51

Pools

Local Traffic Manager can also tag outbound traffic (that is, the return packets based on an HTTP GET)
based on the IP ToS to Client ToS value set in the pool. That value is then inspected by upstream devices
and given appropriate priority.

For example, to configure a pool so that a ToS level is set for a packet sent to that pool, you can set both
the IP ToS to Client level and the IP ToS to Server levels to 1 6. In this case, the ToS level is set to 16 when
sending packets to the client and when sending packets to the server.

Note: If you change the ToS level on a pool for a client or a server, existing connections continue to use
the previous setting.

Quality of Service (QoS) level

Another setting for a pool is the Quality of Service (QoS) level. In addition to the ToS level, the QoS level
is a means by which network equipment can identify and treat traffic differently based on an identifier.
Essentially, the QoS level specified in a packet enforces a throughput policy for that packet.

As traffic enters the site, Local Traffic Manager can set the QoS level on a packet. Using the Link QoS
to Server QoS level that you define for the pool to which the packet is sent, Local Traffic Manager can
apply an iRule that sends the traffic to different pools of servers based on that QoS level.

Local Traffic Manager can also tag outbound traffic (that is, the return packets based on an HTTP GET)
based on the Link QoS to Client QoS value set in the pool. That value is then inspected by upstream devices
and given appropriate priority.

For example, to configure a pool so that a QoS level is set for a packet sent to that pool, you can set the
Link QoS to Client level to 3 and the Link QoS to Server level to 4. In this case, the QoS level is set to 3
when sending packets to the client, and set to 4 when sending packets to the server.

Number of reselect tries

You can specify the number of times that the system tries to contact a new pool member after a passive
failure. A passive failure consists of a server-connect failure or a failure to receive a data response within
a user-specified interval. The default value of 0 indicates no reselects.

Note: This setting is for use primarily with TCP profiles. Using this setting with a Fast L4 profile is not
recommended.

About TCP request queue

52

TCP request queuing provides the ability to queue connection requests that exceed the capacity of connections
for a pool, pool member, or node, as determined by the connection limit. Consequently, instead of dropping
connection requests that exceed the capacity of a pool, pool member, or node, TCP request queuing enables
those connection requests to reside within a queue in accordance with defined conditions until capacity
becomes available.

When using session persistence, a request becomes queued when the pool member connection limit is
reached.

Without session persistence, when all pool members have a specified connection limit, a request becomes
queued when the total number of connection limits for all pool members is reached.

Conditions for queuing connection requests include:

BIG-IP® Local Traffic Manager™: Concepts

* The maximum number of connection requests within the queue, which equates to the maximum number
of connections within the pool, pool member, or node. Specifically, the maximum number of connection
requests within the queue cannot exceed the cumulative total number of connections for each pool
member or node. Any connection requests that exceed the capacity of the request queue are dropped.

+ The availability of server connections for reuse. When a server connection becomes available for reuse,
the next available connection request in the queue becomes dequeued, thus allowing additional connection
requests to be queued.

+ The expiration rate of connection requests within the queue. As queue entries expire, they are removed
from the queue, thus allowing additional connection requests to be queued.

Connection requests within the queue become dequeued when:

* The connection limit of the pool is increased.

* A pool member's slow ramp time limit permits a new connection to be made.

+ The number of concurrent connections to the virtual server decreases below the connection limit.
* The connection request within the queue expires.

About load balancing methods

Load balancing is an integral part of the BIG-IP® system. Configuring load balancing on a BIG-IP system
means determining your load balancing scenario, that is, which pool member should receive a connection
hosted by a particular virtual server. Once you have decided on a load balancing scenario, you can specify
the appropriate load balancing method for that scenario.

A load balancing method is an algorithm or formula that the BIG-IP system uses to determine the server
to which traffic will be sent. Individual load balancing methods take into account one or more dynamic
factors, such as current connection count. Because each application of the BIG-IP system is unique, and
server performance depends on a number of different factors, we recommend that you experiment with
different load balancing methods, and select the one that offers the best performance in your particular
environment.

Default load balancing method

The default load balancing method for the BIG-IP system is Round Robin, which simply passes each new
connection request to the next server in line. All other load balancing methods take server capacity and/or
status into consideration.

If the equipment that you are load balancing is roughly equal in processing speed and memory, Round Robin
mode works well in most configurations. If you want to use the Round Robin method, you can skip the
remainder of this section, and begin configuring other pool settings that you want to add to the basic pool
configuration.

Local Traffic Manager load balancing methods

There are several load balancing methods available within the BIG-IP system for load balancing traffic to
pool members.

Method Description When to use
Round Robin This is the default load balancing method. Round Robin mode =~ Round Robin mode works well in most
passes each new connection request to the next server in line, configurations, especially if the
eventually distributing connections evenly across the array of equipment that you are load balancing is
machines being load balanced. roughly equal in processing speed and
memory.

53

Pools

Method

Ratio
(member)
Ratio (node)

(member)

(node)

Fastest
(application)

Least
Connections
(member)
Least
Connections
(node)

Weighted
Least
Connections
(member)
Weighted
Least

54

Dynamic Ratio

Dynamic Ratio

Fastest (node)

Description

Local Traffic Manager distributes connections among pool
members or nodes in a static rotation according to ratio weights
that you define. In this case, the number of connections that each
system receives over time is proportionate to the ratio weight you
defined for each pool member or node. You set a ratio weight when
you create each pool member or node.

The Dynamic Ratio methods select a server based on various
aspects of real-time server performance analysis. These methods
are similar to the Ratio methods, except that with Dynamic Ratio
methods, the ratio weights are system-generated, and the values
of the ratio weights are not static. These methods are based on
continuous monitoring of the servers, and the ratio weights are
therefore continually changing.

Note: To implement Dynamic Ratio load balancing, you must first
install and configure the necessary server software for these
systems, and then install the appropriate performance monitor.

The Fastest methods select a server based on the least number of
current sessions. These methods require that you assign both a
Layer 7 and a TCP type of profile to the virtual server.

Note: If the OneConnect " feature is enabled, the Least
Connections methods do not include idle connections in the
calculations when selecting a pool member or node. The Least
Connections methods use only active connections in their
calculations.

The Least Connections methods are relatively simple in that Local
Traffic Manager passes a new connection to the pool member or
node that has the least number of active connections.

Note: Ifthe OneConnect feature is enabled, the Least Connections
methods do not include idle connections in the calculations when
selecting a pool member or node. The Least Connections methods
use only active connections in their calculations.

Like the Least Connections methods, these load balancing methods
select pool members or nodes based on the number of active
connections. However, the Weighted Least Connections methods
also base their selections on server capacity. The Weighted Least
Connections (member) method specifies that the system uses the
value you specify in Connection Limit to establish a proportional
algorithm for each pool member. The system bases the load

When to use

These are static load balancing methods,
basing distribution on user-specified ratio
weights that are proportional to the
capacity of the servers.

The Dynamic Ratio methods are used
specifically for load balancing traffic to
RealNetworks® RealSystem® Server
platforms, Windows® platforms equipped
with Windows Management
Instrumentation (WMI), or any server
equipped with an SNMP agent such as
the UC Davis SNMP agent or Windows
2000 Server SNMP agent.

The Fastest methods are useful in
environments where nodes are distributed
across separate logical networks.

The Least Connections methods function
best in environments where the servers
have similar capabilities. Otherwise, some
amount of latency can occur. For
example, consider the case where a pool
has two servers of differing capacities, A
and B. Server A has 95 active connections
with a connection limit of 100, while
server B has 96 active connections with
a much larger connection limit of 500. In
this case, the Least Connections method
selects server A, the server with the
lowest number of active connections,
even though the server is close to
reaching capacity. If you have servers
with varying capacities, consider using
the Weighted Least Connections methods
instead.

Weighted Least Connections methods
work best in environments where the
servers have differing capacities. For
example, if two servers have the same
number of active connections but one
server has more capacity than the other,
Local Traffic Manager calculates the

BIG-IP® Local Traffic Manager™: Concepts

Method

Connections
(node)

Observed
(member)
Observed
(node)

Predictive
(member)
Predictive
(node)

Least Sessions

Ratio Least
Connections

Description

balancing decision on that proportion and the number of current
connections to that pool member. For example, member_a has 20
connections and its connection limit is 100, so it is at 20% of
capacity. Similarly, member_b has 20 connections and its
connection limit is 200, so it is at 10% of capacity. In this case,
the system select selects member b. This algorithm requires all
pool members to have a non-zero connection limit specified. The
Weighted Least Connections (node) method specifies that the
system uses the value you specify in the node's Connection Limit
setting and the number of current connections to a node to establish
a proportional algorithm. This algorithm requires all nodes used
by pool members to have a non-zero connection limit specified.
If all servers have equal capacity, these load balancing methods
behave in the same way as the Least Connections methods.

Note: If the OneConnect feature is enabled, the Weighted Least
Connections methods do not include idle connections in the
calculations when selecting a pool member or node. The Weighted
Least Connections methods use only active connections in their
calculations.

With the Observed methods, nodes are ranked based on the number
of connections. The Observed methods track the number of Layer
4 connections to each node over time and create a ratio for load
balancing.

The Predictive methods use the ranking methods used by the
Observed methods, where servers are rated according to the number
of current connections. However, with the Predictive methods,
Local Traffic Manager analyzes the trend of the ranking over time,
determining whether a node’s performance is currently improving
or declining. The servers with performance rankings that are
currently improving, rather than declining, receive a higher
proportion of the connections.

The Least Sessions method selects the server that currently has
the least number of entries in the persistence table. Use of this load
balancing method requires that the virtual server reference a type
of profile that tracks persistence connections, such as the Source
Address Affinity or Universal profile type.

Note: The Least Sessions methods are incompatible with cookie
persistence.

The Ratio Least Connections methods cause the system to select
the pool member according to the ratio of the number of
connections that each pool member has active.

When to use

percentage of capacity being used on each
server and uses that percentage in its
calculations.

The need for the Observed methods is
rare, and they are not recommended for
large pools.

The need for the Predictive methods is
rare, and they are not recommend for
large pools.

The Least Sessions method works best in
environments where the servers or other
equipment that you are load balancing
have similar capabilities.

About priority-based member activation

Priority-based member activation is a feature that allows you to categorize pool members into priority
groups, so that pool members in higher priority groups accept traffic before pool members in lower priority
groups. The priority-based member activation feature has two configuration settings:

55

Pools

Priority group activation
For the priority group activation setting, you specify the minimum number of members that must remain
available in each priority group in order for traffic to remain confined to that group. The allowed value
for this setting ranges from 0 to 65535. Setting this value to 0 disables the feature (equivalent to using
the default value of Disabled).

Priority group
When you enable priority group activation, you also specify a priority group for each member when
you add that member to the pool. Retaining the default priority group value of 0 for a pool member
means that the pool member is in the lowest priority group and only receives traffic when all pool
members in higher priority groups are unavailable.

If the number of available members assigned to the highest priority group drops below the number that you
specify, the BIG-IP" system distributes traffic to the next highest priority group, and so on.

For example, this configuration has three priority groups, 3, 2, and 1, with the priority group activation
value (shown here asmin active members) setto 2.

pool my pool {
1b mode fastest
min active members 2
member 10.12.10.7:80 priority
member 10.12.10.8:80 priority
member 10.12.10.9:80 priority
member 10.12.10.4:80 priority
member 10.12.10.5:80 priority
member 10.12.10.6:80 priority
member 10.12.10.1:80 priority
member 10.12.10.2:80 priority
member 10.12.10.3:80 priority
}

WN oYU O 0
FERFENNDNDWWW

Connections are first distributed to all pool members with priority 3 (the highest priority group). If fewer
than two priority 3 members are available, traffic is directed to the priority 2 members as well. If both the
priority 3 group and the priority 2 group have fewer than two members available, traffic is directed to the
priority 1 group. The BIG-IP system continuously monitors the priority groups, and whenever a higher
priority group once again has the minimum number of available members, the BIG-IP system limits traffic
to that group.

Pool member features

56

A pool member consists of a server’s IP address and service port number. An example of a pool member
i$10.10.10.1:80. Pool members have a number of features that you can configure when you create the
pool.

Note: By design, a pool and its members always reside in the same administrative partition.

Ratio weights for pool members
When using a ratio-based load balancing method for distributing traffic to servers within a pool, you
can assign a ratio weight to the corresponding pool members. The ratio weight determines the amount
of traffic that the server receives. The ratio-based load balancing methods are: Ratio (node, member,
and sessions), Dynamic Ratio (node and member), and Ratio Least Connections (node and member).

BIG-IP® Local Traffic Manager™: Concepts

Priority group number

The Priority Group feature assigns a priority number to the pool member. Within the pool, traffic is then
load balanced according to the priority number assigned to the pool member. For example, pool members
assigned to group 3, instead of pool members in group 2 or group 1, normally receive all traffic. Thus,
members that are assigned a high priority receive all traffic until the load reaches a certain level or some
number of members in the group become unavailable. If either of these events occurs, some of the traffic
goes to members assigned to the next higher priority group. This setting is used in tandem with the pool
feature known as Priority Group Activation. You use the Priority Group Activation feature to configure
the minimum number of members that must be available before Local Traffic Manager™ begins directing
traffic to members in a lower priority group.

Connection limit
You can specify the maximum number of concurrent connections allowed for a pool member. Note that
the default value of 0 (zero) means that there is no limit to the number of concurrent connections that
the pool member can receive.

Connection rate limit
The maximum rate of new connections allowed for the pool member. When you specify a connection
rate limit, the system controls the number of allowed new connections per second, thus providing a
manageable increase in connections without compromising availability. The default value of 0 specifies
that there is no limit on the number of connections allowed per second. The optimal value to specify
for a pool member is between 300 and 5000 connections. The maximum valued allowed is 100000.

Explicit monitor associations
Once you have associated a monitor with a pool, Local Traffic Manager automatically associates that
monitor with every pool member, including those members that you add to the pool later. However, in
some cases you might want the monitor for a specific pool member to be different from that assigned
to the pool. In this case, you must specify that you want to explicitly associate a specific monitor with
the individual pool member. You can also prevent Local Traffic Manager from associating any monitor
with that pool member.

Explicit monitor association for a pool member
Local Traffic Manager contains many different monitors that you can associate with a pool member,
depending on the type of traffic you want to monitor. You can also create your own custom monitors
and associate them with pool members. The only monitor types that are not available for associating
with pool members are monitors that are specifically designed to monitor nodes and not pools or pool
members. These monitor types are:

« ICMP

e TCP Echo

e Real Server

« SNMP DCA

* SNMP DCA Base
« WMI

Multiple monitor association for a pool member
Local Traffic Manager allows you to associate more than one monitor with the same server. You can:

* Associate more than one monitor with a member of a single pool. For example, you can create
monitors httpl, http2, and http3, where each monitor is configured differently, and associate
all three monitors with the same pool member. In this case, the pool member is marked as down if
any of the checks is unsuccessful.

* Assign one IP address and service to be a member of multiple pools. Then, within each pool, you
can associate a different monitor with that pool member. For example, suppose you assign the server
10.10.10:80 to three separate pools: my pooll,my pool2,andmy pool3. You can then associate
all three custom HTTP monitors to that same server (one monitor per pool). The result is that Local
Traffic Manager uses the httpl monitor to check the health of server 10.10.10. :80 in pool

57

Pools

my pooll, the http2 monitor to check the health of server 10.10.10.:80 in pool my pool2,
and the http3 monitor to check the health of server 10.10.10:80 in pool my pool3.

You can make multiple-monitor associations either at the time you add the pool member to each pool,
or by later modifying a pool member’s properties.

Availability requirement
You can specify a minimum number of health monitors. Before Local Traffic Manager can report the
pool member as being in an up state, this number of monitors, at a minimum, must report a pool member
as being available to receive traffic.

About pool member state

You can enable or disable individual pool members. When you enable or disable a pool member, you
indirectly set the value of the pool member’s State property, in the following way:

* Enable sets the State property of the pool member to Enabled.
» Disable sets the State property of the pool member to Disabled.

Note that the difference between a disabled pool member and a pool member that a monitor reports as down
is that a disabled pool member continues to process persistent and active connections. Conversely, a pool
member reported as down processes no connections whatsoever.

The status icons on the pool-member list screen and properties screen indicate whether a pool member is
currently enabled or disabled.

Pool and pool member status

58

An important part of managing pools and pool members is viewing and understanding the status of a pool
or pool member at any given time. The BIG-IP Configuration utility indicates status by displaying one of
several icons, distinguished by shape and color, for each pool or pool member:

» The shape of the icon indicates the status that the monitor has reported for that pool or pool member.
For example, a circle-shaped icon indicates that the monitor has reported the pool member as being up,
whereas a diamond-shaped icon indicates that the monitor has reported the pool member as being down.

* The color of the icon indicates the actual status of the node itself. For example, a green shape indicates
that the node is up, whereas a red shape indicates that the node is down. A black shape indicates that
user-intervention is required.

At any time, you can determine the status of a pool. The status of a pool is based solely on the status of its
members. Using the BIG-IP Configuration utility, you can find this information by viewing the Availability
property of the pool. You can also find this information by displaying the list of pools and checking the
Status column.

Profiles

Introduction to profiles

Profiles are a configuration tool that you can use to affect the behavior of certain types of network traffic.
More specifically, a profile is an object that contains settings with values, for controlling the behavior of a
particular type of network traffic, such as HTTP connections. Profiles also provide a way for you to enable
connection and session persistence, and to manage client application authentication.

By default, Local Traffic Manager provides you with a set of profiles that you can use as is. These default
profiles contain various settings with default values that define the behavior of different types of traffic. If
you want to change those values to better suit the needs of your network environment, you can create a
custom profile. A custom profile is a profile derived from a default profile and contains values that you
specify.

You can use profiles in the following ways:

* You can use the default profiles, which means that you do not need to actively configure any profile
settings. Local Traffic Manager uses them to automatically direct the corresponding traffic types according
to the values specified in the those profiles.

* You can create a custom profile, using the default profile as the parent profile, modifying some or all
of the values defined in that profile.

* You can create a custom profile to use as a parent profile for other custom profiles.

After configuring a profile, you associate the profile with a virtual server. The virtual server then processes
traffic according to the values specified in the profile. Using profiles enhances your control over managing
network traffic, and makes traffic-management tasks easier and more efficient.

You can associate multiple profiles with a single virtual server. For example, you can associate a TCP
profile, an SSL profile, and an HTTP profile with the same virtual server.

Profile types

Local Traffic Manager provides several types of profiles. While some profile types correspond to specific
application services, such as HTTP, SSL, and FTP, other profiles pertain to traffic behaviors applicable to

basic protocols such as TCP and UDP, and authentication protocols such as LDAP, RADIUS, and Kerberos.
Also included are profiles specifically for different types of session persistence.

Default profiles

Local Traffic Manager includes one or more default profiles for each profile type. A default profile is a
system-supplied profile that contains default values for its settings. An example of a default profile is the
http default profile. You can use a default profile in several ways:

Profiles

* You can use a default profile as is. You simply configure your virtual server to reference the default
profile.

* You can modify the default profile settings (not recommended). When you modify a default profile,
you lose the original default profile settings. Thus, any custom profiles you create in the future that are
based on that default profile inherit the modified settings.

* You can create a custom profile, based on the default profile (recommended). This allows you to preserve
the default profile, and instead configure personalized settings in the custom profile. Custom profiles
inherit some of the setting values of a parent profile that you specify. After creating a custom profile,
you can configure your virtual server to reference the custom profile instead of the default profile.

Note: You can modify a default profile, but you cannot create or delete a default profile.

Local Traffic Manager provides a default profile that you can use as is for each type of traffic. A default
profile includes default values for any of the properties and settings related to managing that type of traffic.
To implement a default profile, you simply assign the profile to a virtual server. You are not required to
configure the setting values.

Custom and parent profiles

60

A custom profile is a profile that is derived from a parent profile that you specify. A parent profile is a
profile from which your custom profile inherits its settings and their default values.

When creating a custom profile, you have the option of changing one or more setting values that the profile
inherited from the parent profile. In this way, you can pick and choose which setting values you would like
to change and which ones you would like to retain. An advantage to creating a custom profile is that by
doing so, you preserve the setting values of the parent profile.

Note: If you do not specify a parent profile when you create a custom profile, Local Traffic Manager
automatically assigns a related default profile as the parent profile. For example, if you create a custom
HTTP type of profile, the default parent profile is the default profile http.

If you do not want to use a default profile as is or change its settings, you can create a custom profile.
Creating a custom profile and associating it with a virtual server allows you to implement your own specific
set of traffic-management policies.

When you create a custom profile, the profile is a child profile and automatically inherits the setting values
of a parent profile that you specify. However, you can change any of the values in the child profile to better
suit your needs.

If you do not specify a parent profile, Local Traffic Manager uses the default profile that matches the type
of profile you are creating.

Important: When you create a custom profile, the BIG-IP® system places the profile into your current
administrative partition.

Important: Within the BIG-IP Configuration utility, each profile creation screen contains a check box to
the right of each profile setting. When you check a box for a setting and then specify a value for that setting,
the profile then retains that value, even if you change the corresponding value in the parent profile later.
Thus, checking the box for a setting ensures that the parent profile never overwrites that value through
inheritance.

Once you have created a custom profile, you can adjust the settings of your custom profile later if necessary.
If you have already associated the profile with a virtual server, you do not need to perform that task again.

BIG-IP® Local Traffic Manager™: Concepts

The default profile as the parent profile

A typical profile that you can specify as a parent profile when you create a custom profile is a default profile.
For example, if you create a custom TCP-type profile called my tcp profile, you can use the default
profile tcp as the parent profile. In this case, Local Traffic Manager automatically creates the profile

my tcp profile so that it contains the same settings and default values as the default profile tcp. The
new custom profile thus inherits its settings and values from its parent profile. You can then retain or change
the inherited setting values in the custom profile to suit your needs.

The custom profile as the parent profile

When creating a custom profile, you can specify another custom profile, rather than the default profile, as
the parent profile. The only restriction is that the custom profile that you specify as the parent must be of
the same profile type as the profile you are deriving from the parent. Once you have created the new custom
profile, its settings and default values are automatically inherited from the custom profile that you specified
as the parent.

For example, if you create a profile called my tcp profile2, you can specify the custom profile
my tcp profile as its parent. The result is that the default setting values of profile my tcp profile2
are those of its parent profile my tcp profile.

If you subsequently modify the settings of the parent profile (my tcp profile), Local Traffic Manager
automatically propagates those changes to the new custom profile.

For example, if you create the custom profile my tcp profile and use it as a parent profile to create the
custom profile my tcp profile2, any changes you make later to the parent profile my tcp profile
are automatically propagated to profile my tcp profile2. Conversely, if you modify any of the settings
in the new custom profile (in our example, my tcp profile?2), the new custom profile does not inherit
values from the parent profile for those particular settings that you modified.

Profiles and virtual servers

Once you have created a profile for a specific type of traffic, you implement the profile by associating that
profile with one or more virtual servers.

You associate a profile with a virtual server by configuring the virtual server to reference the profile.
Whenever the virtual server receives that type of traffic, Local Traffic Manager applies the profile settings
to that traffic, thereby controlling its behavior. Thus, profiles not only define capabilities per network traffic
type, but also ensure that those capabilities are available for a virtual server.

Because certain kinds of traffic use multiple protocols and services, users often create multiple profiles and
associate them with a single virtual server.

For example, a client application might use the TCP, SSL, and HTTP protocols and services to send a
request. This type of traffic would therefore require three profiles, based on the three profile types TCP,
Client SSL, and HTTP.

Each virtual server lists the names of the profiles currently associated with that virtual server. You can add
or remove profiles from the profile list, using the BIG-IP Configuration utility. Note that Local Traffic

61

Profiles

62

Manager (LTM®) has specific requirements regarding the combinations of profile types allowed for a given
virtual server.

In directing traffic, if a virtual server requires a specific type of profile that does not appear in its profile
list, Local Traffic Manager uses the relevant default profile, automatically adding the profile to the profile
list. For example, if a client application sends traffic over TCP, SSL, and HTTP, and you have assigned
SSL and HTTP profiles only, LTM automatically adds the default profile tcp to its profile list.

At a minimum, a virtual server must reference a profile, and that profile must be associated with a UDP,
FastL4, Fast HTTP, or TCP profile type. Thus, if you have not associated a profile with the virtual server,
Local Traffic Manager adds a udp, fast14, fasthttp, or tcp default profile to the profile list.

The default profile that Local Traffic Manager chooses depends on the configuration of the virtual server’s
protocol setting. For example, if the protocol setting is set to UDP, Local Traffic Manager adds the udp
profile to its profile list.

HTTP Profiles

Introduction to HTTP profiles

BIG-IP® Local Traffic Manager offers several features that you can use to intelligently control your
application layer traffic. Examples of these features are the insertion of headers into HTTP requests and the
compression of HTTP server responses.

These features are available through various configuration profiles. A profile is a group of settings, with
values, that correspond to HTTP traffic. A profile defines the way that you want the BIG-IP system to
manage HTTP traffic.

You can configure an HTTP profile to ensure that HTTP traffic management suits your specific needs. You
can configure the profile settings either when you create a profile or after you create the profile by modifying
the profile’s settings. For all profile settings, you can specify values where none exist, or modify any default
values to suit your needs. The BIG-IP system also includes default profiles that you can use as is, if you do
not want to create a custom profile.

To manage HTTP traffic, you can use any of these profile types:

+ HTTP (Hypertext Transfer Protocol)
+ HTTP Compression
* Web Acceleration

In addition to the HTTP profiles, Local Traffic Manager includes other features to help you manage your
application traffic, such as health monitors for checking the health of HTTP and HTTPS services, and
iRules"“for querying or manipulating header or content data.

General HTTP properties

Proxy mode

There are a few general settings that you can configure to create a basic HTTP type of profile that uses most
of the default settings.

The HTTP profile provides three proxy modes: Reverse, Explicit, and Transparent. You can configure a
custom HTTP profile that uses a specific proxy mode, and assign the custom HTTP profile to a virtual
server to manage proxying of HTTP traffic, as necessary.

Proxy Description
Mode

Reverse Default. You can specify the Reverse Proxy Mode to enable the BIG-IP® system to manage
responses from multiple servers.

Explicit The Explicit Proxy Mode enables the BIG-IP system to handle HTTP proxy requests and
function as a gateway. By configuring browser traffic to use the proxy, you can control whether

HTTP Profiles

Proxy Description
Mode

to allow or deny a requested connection, based on configured policies. The Explicit Proxy
Mode requires a DNS resolver, specified in the Explicit Proxy area of the screen.

Transparent The Transparent Proxy Mode enables the BIG-IP system to forward invalid HTTP traffic to
a specified server, instead of dropping the connection. By configuring an HTTP profile to
forward invalid HTTP traffic, you can manage various atypical service provider scenarios,
such as HTTP traffic from non-browser clients that function as web browsers.

Parent profile

Every profile that you create is derived from a parent profile. You can use the default http profile as the
parent profile, or you can use another HTTP profile that you have already created.

HTTP settings

There are several general settings that you can configure to create an HTTP type of profile.

Basic Auth Realm

The Basic Auth Realm setting provides a quoted string for the basic authentication realm. The BIG-IP”
system sends this string to a client whenever authorization fails.

Fallback host

Another feature that you can configure within an HTTP profile is HTTP redirection. HTTP redirection
allows you to redirect HTTP traffic to another protocol identifier, host name, port number, or URI path.

Redirection to a fallback host occurs if all members of the targeted pool are unavailable, or if a selected
pool member is unavailable. (The term unavailable refers to a member being disabled, marked as down,
or having exceeded its connection limit.) When one or more pool members are unavailable, Local Traffic
Manager can redirect the HTTP request to the fallback host, with the HTTP reply Status Code 302
Found.

Although HTTP redirection often occurs when the system generates an LB FAILED iRule event, redirection
can also occur without the occurrence of this event, such as when:

* The selected node sends an RST aftera TCP 3WHS has completed, but before the node has sent at least
a full response header.

* Local Traffic Manager finds the selected node to be unreachable while receiving the body portion of a
request or a pipelined request.

When configuring Local Traffic Manager to redirect HTTP traffic to a fallback host, you can specify an IP
address or a fully-qualified domain name (FQDN). The value that you specify becomes the value of the
Location header that the server sends in the response. For example, you can specify a redirection as
http://redirector.siterequest.com.

64

BIG-IP® Local Traffic Manager™: Concepts

Fallback error codes

In addition to redirecting traffic when a target server becomes unavailable, you can also specify the HTTP
error codes from server responses that should trigger a redirection to the fallback host. Typical error codes
to specify are 500, 501, and 502.

Headers in HTTP requests

You can insert headers into HTTP requests. The HTTP header being inserted can include a client IP address.
Including a client IP address in an HTTP header is useful when a connection goes through a secure network
address translation (SNAT) and you need to preserve the original client IP address.

The format of the header insertion that you specify is generally a quoted string. Alternatively, however, you
can insert a Tools Command Language (Tcl) expression into a header that dynamically resolves to the
preferred value. When you assign the configured HTTP profile to a virtual server, Local Traffic Manager
then inserts the header specified in the profile into any HTTP request that the BIG-IP” system sends to a
pool or pool member.

Note: In addition to inserting a string such as a client IP address into an HTTP request, you can configure
Local Traffic Manager to insert SSL-related headers into HTTP requests. Examples are: client certificates,
cipher specifications, and client session IDs. To insert these types of headers, you must create an iRule.

Content erasure from HTTP headers

You can configure a profile to erase the contents of a header from an HTTP request that is being sent from
a client to a server. With this feature, you can erase header content from HTTP requests before forwarding
the requests over the network. Such headers might contain sensitive information, such as user IDs or telephone
numbers, that must be erased before the information is forwarded.

When you use this setting, Local Traffic Manager erases the contents of the specified header and replaces
that content with blank spaces. The header itself is retained.

Note: This feature does not apply to HTTP responses being sent from a server to a client.

The client header with the contents to be erased must be specified as a quoted string.

Headers in an HTTP response
You can specify any headers within an HTTP response that you want the BIG-IP” system to allow. If you
are specifying more than one header, separate the headers with a blank space. For example, if you type the

string Content-Type Set-Cookie Location,the BIG-IP system then allows the headers Content-Type,
Set-Cookie, and Location.

Response chunking

Sometimes, you might want to inspect and/or modify HTTP application data, such as compressing the
content of an HTTP response. Such inspections or modifications require that the response be unchunked,

65

HTTP Profiles

that is, not in chunked encoding. Using the Response Chunking feature, Local Traffic Manager can unchunk
a chunked response before performing an action on that response.

Possible chunking behaviors of Local Traffic Manager

The BIG-IP® system takes specific action on a response depending on whether the response is chunked or

unchunked.
Action Original responseis chunked Original response is
unchunked
Unchunk Local Traffic Manager™ unchunks Local Traffic Manager processes
the response and processes the the HTTP content and passes the
HTTP content, and passes the response on untouched.

response on as unchunked. The
connection closes when all data is
sent to the client as indicated by
the Connection: Close header.

Rechunk Local Traffic Manager unchunks Local Traffic Manager adds
the response, processes the HTTP transfer encoding and chunking
content, re-adds the chunk trailer headers on egress.
headers, and then passes the
response on as chunked. Any
chunk extensions are lost.

Selective Same as Rechunk. Local Traffic Manager processes
the HTTP content and then passes
the response on untouched.

Preserve Local Traffic Manager leaves the Local Traffic Manager processes
response chunked, processes the the HTTP content and then passes
HTTP content, and passes the the response on untouched.

response on untouched. Note that
if HTTP compression is enabled,
Local Traffic Manager does not
compress the response.

OneConnect transformations

You can enable or disable part of the OneConnect " feature, for HTTP/1.0 connections only. When this
setting is enabled and a OneConnect profile is assigned to the virtual server, the setting performs Connection
header transformations, for the purpose of keeping a client connection open. More specifically:

1. A client sends an HTTP/1.0 request.

2. The server sends a response, which initially includes a Connection: Close header.

3. Local Traffic Manager transforms the Connection: Close headertoConnection: Keep-Alive.
4

. Through use of the OneConnect profile, the server-side connection detaches, goes into the pool of
available server-side connections used for servicing other requests, and eventually closes. This process
is hidden from the client.

5. The client-side connection remains open, operating under the assumption that the server-side connection
is still open and therefore able to accept additional requests from that client.

Note: For this feature to take effect, you must also configure a OneConnect " profile, which enables
connection pooling.

66

BIG-IP® Local Traffic Manager™: Concepts

Rewrites of HTTP redirections

Sometimes, a client request is redirected from the HTTPS protocol to the HTTP protocol, which is a
non-secure channel. If you want to ensure that the request remains on a secure channel, you can cause the
redirection to be rewritten so that it is redirected back to the HTTPS protocol.

To enable Local Traffic Manager to rewrite HTTP redirections, you use the Rewrite Redirections setting
to specify the way that you want the system to handle URIs during the rewrite.

Note that the rewriting of any redirection takes place only in the HTTP Location header of the redirection
response, and not in any content of the redirection.

Possible values

When configuring Local Traffic Manager to rewrite HTTP redirections, you specify one of these values:

None
The system does not rewrite any redirections. This is the default value.

All
The system rewrites the URI in all HTTP redirect responses. In this case, the system rewrites those URIs
as if they matched the originally-requested URIs.

Matching
The system rewrites the URI in any HTTP redirect responses that match the request URI (minus an
optional trailing slash).

Nodes
The system rewrites the hidden node IP address to a virtual server address, and rewrites the port number.
You choose this value when the virtual server is not configured with a Client SSL profile (that is, when
the virtual server is configured to process plain HTTP traffic only).

Note: For values All, Matching, and Nodes, the system always hides the node IP address. Also, the system
hides the node IP address independently of the protocol rewrite, with no regard to the protocol in the
original redirection.

Examples of rewriting HTTP redirections with the system listening on port 443

This table shows examples of how redirections of client requests are transformed when the BIG-IP system
is listening on port 443, and the Rewrite Redirections setting is enabled.

Original Redirection Rewrite of Redirection
http://www.myweb.com/myapp/ https://www.myweb.com/myapp/
http://www.myweb.com:8080/myapp/ https://www.myweb.com/myapp/

Examples of rewriting HTTP redirections with the system listening on port 4443

This table shows examples of how redirections of client requests are transformed when the BIG-IP system
is listening on port 443, and the Rewrite Redirections setting is enabled.

Original Redirection Rewrite of Redirection
http://www.myweb.com/myapp/ https://www.myweb.com:4443/myapp/
http://www.myweb.com:8080/myapp/ https://www.myweb.com:4443/myapp/

67

HTTP Profiles

Cookie encryption and decryption
You can use the BIG-IP Configuration utility to encrypt one or more cookies that the BIG-IP® system sends

to a client system. When the client sends the encrypted cookie back to the BIG-IP system, the system
decrypts the cookie.

X-Forwarded-For header insertion
When using connection pooling, which allows clients to make use of existing server-side connections, you
can insert the XForwarded For header into a request. When you configure Local Traffic Manager to

insert this header, the target server can identify the request as coming from a client other than the client that
initiated the connection. The default setting is Disabled.

Maximum columns for linear white space

You can specify the maximum number of columns allowed for a header that is inserted into an HTTP request.

Linear white space separators

You can specify the separator that Local Traffic Manager should use between HTTP headers when a
header exceeds the maximum width specified by the LWS Maximum Columns feature.

Maximum number of requests

You can specify the maximum number of requests that the system allows for a single Keep-Alive connection.
When the specified limit is reached, the final response contains a Connection: close header, which is
followed by the closing of the connection. The default setting is 0, which in this case means that the system
allows an infinite number of requests per Keep-Alive connection.

Proxy Via headers

You can configure the BIG-IP® system to remove, preserve, or append via headers in HTTP client requests,
HTTP server responses, or both.

Overview: Using Via headers

Via headers provide useful information about intermediate routers that can be used in network analysis and
troubleshooting.

About using Via headers in requests and responses

The via header, configured in an HTTP profile, provides information about each intermediate router that
forwards a message. Intermediate routers between a client and an origin web server use the via header to
indicate intermediate protocols and recipients. This information can be used for the following tasks:

68

BIG-IP® Local Traffic Manager™: Concepts

+ Identifying the intermediate routers that forward messages.
+ Identifying the protocols for intermediate routers.

About identifying intermediate routers with a Via header

The via header, configured in an HTTP profile, concatenates information for each router in a response or
request, separated by commas. For example, the following vi a header includes two routers, with each router
comprising the required protocol and address:

Via: 1.1 wa.www.siterequestl.com, 1.1 wa.www.siterequest2.com

When a client initiates a request with a Via header to an origin web server, the origin web server returns a
response with a via header often following a similar path. For example, a via header router sequence for
the request would be 1, 2, 3, and the router sequence for the client's response would be 3, 2, 1.

The inverse is true when an origin web server initiates a response with a via header to a client. For example,
aVia header router sequence for a response would be 1, 2, 3, and the router sequence for the client's request
would be 3, 2, 1.

About identifying protocols for intermediate routers with a Via header

You can identify specific protocols and versions of protocols for intermediate routers by using a Via header,
configured in an HTTP profile. When a client sends a request to an origin web server, the header information
is concatenated for each intermediate router, including the protocol type (if different from HTTP) and
version.

The via header includes both required and optional protocol information about each router, as follows:

* The HTTP protocol name is optional; however, other protocol names are required.
» The protocol version of the message is required, which for HTTP is 1.0, 1.1, and so on.
+ The host name is required. For privacy purposes, however, an alias can replace the actual host name.

* The port number associated with the host name is optional. When the port number is omitted, the default
port applies.

* A comment describing the router is optional, and includes whatever string you specify in the Send Proxy
Via Header Host Name field, by selecting Append in the list for Send Proxy Via Header In Request
or Send Proxy Via Header In Response.

Note: If you prefer to replace the host name with another string, instead of appending a string to the
Via header, you must use an iRule or the command line.

Because the via header includes the protocol name and version, applications are able to acquire this
information for the various intermediate routers and use it, as necessary.

Via Header settings

This table describes controls and strings for Via Header settings in an HTTP profile.

Control Default |Description
Send Proxy Via Remove |Specifies whether to Remove, Preserve, or Append via headers
Header In Request included in a client request to an origin web server.

« Remove. The BIG-IP” system deletes the via header from the client
request.

* Preserve. The BIG-IP system includes the via header in the client
request to the origin web server.

69

HTTP Profiles

Control Default |Description

* Append. The BIG-IP system appends the string specified in the Send
Proxy Via Header In Host Name field to the Via header in the
client request to the origin web server.

Send Proxy Via Remove |Specifies whether to Remove, Preserve, or Append via headers
Header In Response included in an origin web server response to a client.

* Remove. The BIG-IP system deletes the Via header from the origin
web server response.

* Preserve. The BIG-IP system includes the via header in the origin
web server response to the client.

+ Append. The BIG-IP system appends the string specified in the Send
Proxy Via Header In Host Name field to the Via header in the
origin web server response to the client.

Send Proxy Via None Specifies a string to append as a comment when sending a vVia header
Header Host Name in a request to an origin web server or in a response to a client.

Note: Ifyou prefer to replace the host name with another string, instead
of appending a string to the Via header, you must use an iRule or the
command line.

X-Forwarded-For header acceptance

This setting enables or disables trusting the client IP address, and statistics from the client IP address, based
on the request's X-Forwarded-For (XFF) headers, if they exist.

Alternate X-Forwarded-For headers
Specifies alternative XFF headers instead of the default X-Forwarded-For header. If you are specifying

more than one alternative XFF header, separate the alternative XFF headers with a blank space, such as
clientl proxyserver 129.78.138.66.

Server agent name

When you create an HTTP profile, you can specify the string used as the server name in traffic generated
by the BIG-IP® system. The default value is BigTIPp.

Enforcement settings

There are some settings related to enforcement that you can configure to create an HTTP type of profile.

70

BIG-IP® Local Traffic Manager™: Concepts

Allow truncated redirects

The Allow Truncated Redirect setting determines the way in which the BIG-IP® system passes through
traffic, when a redirect that lacks the trailing carriage-return and line-feed pair at the end of the headers is
parsed. The default is Disabled, which silently drops the invalid HTTP request.

Maximum header size

This setting specifies the maximum size in bytes that the BIG-IP” system allows for all HTTP request
headers combined, including the request line. If the combined headers length in bytes in a client request
exceeds this value, the system stops parsing the headers and resets the TCP connection. The default value
is 32, 768 bytes.

Oversize client headers

The Oversize Client Headers setting determines the way in which the BIG-IP® system passes through
HTTP traffic when the Maximum Header Size value is exceeded by the client. The default is disabled,
which rejects the connection.

Note: This feature is only available on the HTTP profile when you set the proxy mode feature to Transparent.

Oversize server headers

The Oversize Server Headers setting determines the way in which the BIG-IP” system passes through
HTTP traffic when the Maximum Header Size value is exceeded by the server. The default is disabled,
which rejects the connection.

Note: This feature is only available on the HTTP profile when you set the proxy mode feature to Transparent.

Maximum header count

The Maximum Header Count setting determines the maximum number of headers in an HTTP request or
response that the BIG-IP” system accepts. If a client or server sends a request or response with the number
of headers exceeding the specified value, then the connection is dropped. The default value is 64.

Excess client headers

The Excess Client Headers setting specifies the way in which the BIG-IP® system passes through HTTP
traffic when the Maximum Header Count value is exceeded by the client. The default is disabled, which
rejects the connection.

Note: This feature is only available on the HTTP profile when you set the proxy mode feature to Transparent.

71

HTTP Profiles

Excess server headers

The Excess Server Headers setting specifies the way in which the BIG-IP® system passes through HTTP
traffic when the Maximum Header Count value is exceeded by the server. The default is disabled, which
rejects the connection.

Note: This feature is only available on the HTTP profile when you set the proxy mode feature to Transparent.

Support for pipelining

Normally, a client cannot initiate a request until the previous request has received a response. HTTP/1.1
pipelining allows clients to initiate multiple requests even when prior requests have not received a response.
Note, however, that each initiated request is still processed sequentially; that is, a request in the queue is
not processed until the previous request has received a response.

By enabling support for pipelining on the BIG-IP® system, you remove the need to enable pipelining on
the destination server itself. By default, this feature is enabled.

Unknown methods
The Unknown Method setting determines the way in which the BIG-IP® system manages HTTP traffic

when an unknown HTTP method is parsed. You can configure the Unknown Method setting to allow,
reject, or pass through the HTTP traffic. The default is to allow unknown methods.

Explicit proxy settings

when you set the proxy mode to Explicit, you must also configure the settings in the Explicit Proxy area
of the HTTP profile.

DNS Resolver

The DNS Resolver setting specifies the DNS resolver to use for DNS inquiries handled by the virtual servers
associated with the HTTP explicit forward proxy profile you are creating.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit,
in which case the setting is required. If no DNS resolver exists on the system, you can create one at DNS >
Caches > Cache List > Create.

Route Domain

You can configure an HTTP profile to specify the route domain that is used for outbound connect requests
for the explicit forward proxy feature. The default route domain is 0.

72

BIG-IP® Local Traffic Manager™: Concepts

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

Tunnel Name

The Tunnel Name setting specifies the tunnel that is used for outbound connect requests when the explicit
forward proxy feature is used. Specifying a tunnel enables other virtual servers to receive connections
initiated by the proxy service.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

Host Names

The Host Name setting specifies the name of hosts that should not be proxied when an explicit forward
proxy is used.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

Default Connect Handling

The Default Connect Handling setting specifies the behavior of the forward explicit proxy service when
handling outbound requests. By default, this setting is disabled.

* Enabled (checked) indicates that outbound requests are delivered directly, regardless of the presence of
listening virtual servers.

» Disabled (check box cleared) indicates that outbound requests are delivered only if another virtual server
is listening on the tunnel for the requested outbound connection. With this setting, virtual servers are
required, and the system processes the outbound traffic before it leaves the device.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

Connection Failed Message

You can configure an http explicit forward proxy profile to specify the message that appears when a
connection failure occurs. You can include TCL expressions.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

DNS Lookup Failed Message

You can configure an http explicit forward proxy profile to specify the message that appears when a DNS
lookup failure occurs. You can include TCL expressions.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

73

HTTP Profiles

Bad Request Message

You can configure an http explicit forward proxy profile to specify the message that appears when a bad
request occurs. You can include TCL expressions.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

Bad Response Message

You can configure an http explicit forward proxy profile to specify the message that appears when a bad
response occurs. You can include TCL expressions.

Note: This setting is available on the HTTP profile only when you set the proxy mode feature to Explicit.

sFlow settings

You can configure the HTTP profile to use sFlow technology to monitor traffic passing through the BIG-IP
system.

Polling intervals

You can configure an HTTP profile to specify the maximum interval in seconds between two pollings. The
default value is Default, which represents the value set on the System :: sFlow :: Global Settings :: http ::
Properties screen. The initial default value is 10 seconds.

Sampling rates

You can configure an HTTP profile to specify the ratio of packets observed to the samples generated. For
example, a sampling rate of 2000 specifies that the system randomly generates 1 sample for every 2000
packets observed. The default value is Default, which represents the value set on the System :: sFlow ::
Global Settings :: http :: Properties screen. The initial default value is 1024 packets.

About HTTP compression profiles

HTTP compression reduces the amount of data to be transmitted, thereby significantly reducing bandwidth
usage. All of the tasks needed to configure HTTP compression on the BIG-IP" system, as well as the
compression software itself, are centralized on the BIG-IP system. The tasks needed to configure HTTP
compression for objects in an Application Acceleration Manager module policy node are available in the
Application Acceleration Manager, but an HTTP compression profile must be enabled for them to function.

When configuring the BIG-IP system to compress data, you can:

» Configure the system to include or exclude certain types of data.

74

BIG-IP® Local Traffic Manager™: Concepts

» Specify the levels of compression quality and speed that you want.

You can enable the HTTP compression option by setting the URT Compression or the Content Compression
setting of the HTTP Compression profile to URI List or Content List, respectively. This causes the BIG-IP
system to compress HTTP content for any responses in which the values that you specify in the URI List
or Content List settings of an HTTP profile match the values of the Request-URI or Content-Type
response headers.

Exclusion is useful because some URI or file types might already be compressed. Using CPU resources to
compress already-compressed data is not recommended because the cost of compressing the data usually
outweighs the benefits. Examples of regular expressions that you might want to specify for exclusion are
.*\.pdf, .*\.gif,or .*\.html.

Note: The string that you specify in the URI List or the Content List setting can be either a pattern string
or a regular expression. List types are case-sensitive for pattern strings. For example, the system treats the
pattern string www. £5 . com differently from the pattern string www. F5. com. You can override this
case-sensitivity by using the Linux regexp command.

HTTP Compression profile options

You can use an HTTP Compression profile alone, or with the BIG-IP® Application Acceleration Manager,
to reduce the amount of data to be transmitted, thereby significantly reducing bandwidth usage. The tasks
needed to configure HTTP compression for objects in an Application Acceleration Manager policy node
are available in the Application Acceleration Manager, but an HTTP Compression profile must be enabled
for them to function.

URI compression

If you enable compression, you probably do not want Local Traffic Manager to compress every kind of
server response. Therefore, you can instruct Local Traffic Manager (LTM®) to include in compression, or
exclude from compression, certain responses that are specified in the URIs of client requests.

More specifically, you can type regular expressions to specify the types of server responses that you want
Local Traffic Manager to include in, or exclude from, compression. For example, you can specify that you
want LTM to compress all . htm responses by typing the regular expression . * . htm. LTM then compares
that response type to the URI specified within each client request, and if the system finds a match, takes
some action.

Note: The string that you specify can be either a pattern string or a regular expression. Note that list types
are case-sensitive for pattern strings. For example, the system treats the pattern string www. £5. com
differently from the pattern string www. F5. com. You can override this case-sensitivity by using the Linux
regexp command.

Content compression

If you enable compression, you probably do not want Local Traffic Manager to compress every kind of
server response. Therefore, you can instruct Local Traffic Manager (LTM®) to include in compression, or
exclude from compression, certain responses that are specified in the Content-Type header of server
responses.

75

HTTP Profiles

More specifically, you can type regular expressions to specify the types of server responses that you want
Local Traffic Manager to include in, or exclude from, compression. For example, you can specify that you
want LTM to compress all . htm responses by typing the regular expression .*.htm. Local Traffic Manager
then compares that response type to the value of the Content-Type header specified within each server
response, and if the system finds a match, takes some action.

Note: The string that you specify can be either a pattern string or a regular expression. Note that list types
are case-sensitive for pattern strings. You can override this case-sensitivity by using the Linux regexp
command.

Preferred compression methods

You can specify the compression method that you want Local Traffic Manager to use when compressing
responses. The two possible compression methods are gzip and deflate.

Minimum content length for compression

When compression is enabled, you can specify the minimum length of a server response in uncompressed
bytes that Local Traffic Manager requires for compressing that response. Local Traffic Manager (LTM")
finds the content length of a server response in the Content-Length header of the server response. Thus,
if the content length specified in the response header is below the value that you assign for minimum content
length, LTM does not compress the response. The length in bytes applies to content length only, not headers.

For example, using the default value of 1024, Local Traffic Manager compresses only those responses with
HTTP content containing at least 1024 bytes.

Sometimes the Content-Length header does not indicate the content length of the response. In such cases,
LTM compresses the response, regardless of size.

Compression buffer size

When compression is enabled, you can specify the maximum number of compressed bytes that Local Traffic
Manager buffers before deciding whether or not to preserve a Keep-Alive connection and rewrite the
Content-Length header.

For example, using the default value of 4096, Local Traffic Manager (LTM®) buffers up to 4096 bytes of
compressed data before deciding whether or not to preserve the connection and rewrite the Content-Length
header.

The Local Traffic Manager decision to rewrite the Content-Length header depends on whether response
chunking is enabled (using the Response Chunking profile setting).

About the Vary header

76

When compression is enabled, the Vary Header setting inserts the Vary: Accept-Encoding header into
a compressed server response. If the vary header already exists in the response, Local Traffic Manager
appends the value Accept-Encoding to that header.

The reason for inserting the Vvary: Accept-Encoding header into a server response is to follow a
recommendation by RFC2616, which states that the vary header should be inserted into any cacheable

BIG-IP® Local Traffic Manager™: Concepts

response that is subject to server-driven negotiation. Server responses that are subject to HTTP compression
fall into this category.

If the Vary Header setting is disabled, Local Traffic Manager does not insert the Vary header into a server
response.

To disable the vary header, locate the Vary Header setting and clear the Enabled box.

Compression for HTTP/1.0 requests

The HTTP/1.0 Requests setting is included for backward compatibility, allowing HTTP compression for
responses to HTTP/1.0 client requests. The default value for this setting is Disabled.

If this setting is set to Enabled, Local Traffic Manager only compresses responses in either of the following
cases:

* When the server responds with a Connection: close header
* When the response content is no greater than the value of the Compression Buffer Size setting

To enable compression for HTTP/1.0 requests, locate the HTTP/1.0 Requests setting and select the check
box.

About the Accept-Encoding header

Normally, when you enable HTTP compression, Local Traffic Manager strips out the Accept-Encoding
header from the HTTP request. This causes Local Traffic Manager, instead of the target server, to perform
the HTTP compression.

By default, the Keep Accept Encoding setting is disabled. If you want to allow the target server instead of
Local Traffic Manager to perform the HTTP compression, simply enable this setting.

Browser workarounds

When you enable the Browser Workarounds setting, the system uses built-in workarounds for several
common browser issues that occur when compressing content. The default setting is disabled (cleared).
More specifically, enabling this setting prevents the system from compressing server responses when any
of these conditions exists:

« The client browser is Netscape” version 4.0x.

* The client browser is Netscape version 4.x (that is, versions 4.10 and higher), and the Content-Type
header of the server response is not set to text/html or text/plain.

« The client browser is Microsoft” Internet Explorer® (any version), the Content-Type header of the
server response is set to either text/css or application/x-javascript, and the client connection uses SSL.

« The client browser is Microsoft® Internet Explorer” (any version), the Content-Type header of the
server response is set to either text/css or application/x-javascript, and the Cache-Control header
of the server response is set to no-cache.

77

HTTP Profiles

About Web Acceleration profiles

When used by BIG-IP® Local Traffic Manager ~ without other provisioned modules, the Web Acceleration
profile uses basic default acceleration.

Web Acceleration profile settings

This table describes the Web Acceleration profile configuration settings and default values.

Setting Value Description

Name No default Specifies the name of the profile.

Parent Profile |Selected Specifies the selected predefined or user-defined profile.

predefined or
user-defined
profile

Partition / Path | Common Specifies the partition and path to the folder for the profile objects.

Cache Size 100 This setting specifies the maximum size in megabytes (MB) reserved
for the cache. When the cache reaches the maximum size, the system
starts removing the oldest entries.

Maximum 10000 Specifies the maximum number of entries that can be in the cache.

Entries

Maximum Age | 3600 Specifies how long in seconds that the system considers the cached
content to be valid.

Minimum 500 Specifies the smallest object in bytes that the system considers eligible

Object Size for caching.

Maximum 50000 Specifies the largest object in bytes that the system considers eligible

Object Size for caching.

URI Caching |Not Configured | Specifies whether the system retains or excludes certain Uniform
Resource Identifiers (URIs) in the cache. The process forces the system
either to cache URIs that typically are ineligible for caching, or to not
cache URIs that typically are eligible for caching.

URI List No default value | Specifies the URIs that the system either includes in or excludes from

caching.

+ Pin List. Lists the URISs for responses that you want the system to
store indefinitely in the cache.

* Include List. Lists the URIs that are typically ineligible for caching,
but the system caches them. When you add URISs to the Include
List, the system caches the GET methods and other methods,
including non-HTTP methods.

» Exclude List. Lists the URIs that are typically eligible for caching,
but the system does not cache them.

* Include Override List. Lists URIs to cache, though typically, they
would not be cached due to defined constraints, for example, the
Maximum Object Size setting. The default value is none. URIs in

BIG-IP® Local Traffic Manager™: Concepts

Setting

Value

Description

the Include Override List list are cacheable even if they are not
specified in the Include List.

Ignore Headers

All

Specifies how the system processes client-side Cache-Control
headers when caching is enabled.

* None. Specifies that the system honors all Cache-Control
headers.

* Cache-Control:max-age. Specifies that the system disregards a
Cache-Control :max-age request header that has a value of
max-age=0.

» All Specifies that the system disregards all Cache-Control
headers.

Insert Age Enabled Specifies, when enabled, that the system inserts Date and Age headers

Header in the cached entry. The Date header contains the current date and
time on the BIG-IP” system. The Age header contains the length of
time that the content has been in the cache.

Aging Rate 9 Specifies how quickly the system ages a cache entry. The aging rate
ranges from 0 (slowest aging) to 10 (fastest aging).

AM No default Lists enabled Application Acceleration Manager applications in the

Applications Enabled field and available applications in the Available field.

79

Other Application-Layer Profiles

Overview of other application-layer profiles

BIG-IP® Local Traffic Manager™ offers several features that you can use to intelligently control your
application layer traffic. These features are available through various configuration profiles.

A profile is a group of settings, with values, that correspond to a specific type of traffic, such as FTP traffic.
A profile defines the way that you want the BIG-IP system to manage that traffic type. After you configure
the type of profile you need, you assign it to a virtual server.

To manage application layer traffic, you can use any of these profile types:

FTP (File Transfer Protocol)

DNS (Domain Name System)

RTSP (Real Time Streaming Protocol)

ICAP (Internet Content Adaptation Protocol)
Request Adapt and Response Adapt
Diameter

RADIUS (Remote Authentication Dial-In User Service)
SIP (Session Initiation Protocol)

SMTP

SMTPS

iSession

Rewrite

XML

SPDY

FIX

video Quality of Experience (QOE)

In addition to these application layer profiles, Local Traffic Manager includes other features to help you
manage your application traffic, such as health monitors for checking the health of an FTP service, and
iRules” for querying or manipulating header or content data. Additional profiles may be available with other
modules.

About HTTP compression profiles

HTTP compression reduces the amount of data to be transmitted, thereby significantly reducing bandwidth
usage. All of the tasks needed to configure HTTP compression on the BIG-IP® system, as well as the
compression software itself, are centralized on the BIG-IP system. The tasks needed to configure HTTP
compression for objects in an Application Acceleration Manager module policy node are available in the
Application Acceleration Manager, but an HTTP compression profile must be enabled for them to function.

When configuring the BIG-IP system to compress data, you can:

Configure the system to include or exclude certain types of data.
Specify the levels of compression quality and speed that you want.

Other Application-Layer Profiles

You can enable the HTTP compression option by setting the URT Compression or the Content Compression
setting of the HTTP Compression profile to URI List or Content List, respectively. This causes the BIG-IP
system to compress HTTP content for any responses in which the values that you specify in the URI List
or Content List settings of an HTTP profile match the values of the Request-URI or Content-Type
response headers.

Exclusion is useful because some URI or file types might already be compressed. Using CPU resources to
compress already-compressed data is not recommended because the cost of compressing the data usually
outweighs the benefits. Examples of regular expressions that you might want to specify for exclusion are
.*\.pdf, .*\.gif,or .*\.html.

Note: The string that you specify in the URI List or the Content List setting can be either a pattern string
or a regular expression. List types are case-sensitive for pattern strings. For example, the system treats the
pattern string www. £5 . com differently from the pattern string www. F5. com. You can override this
case-sensitivity by using the Linux regexp command.

HTTP Compression profile options

You can use an HTTP Compression profile alone, or with the BIG-IP® Application Acceleration Manager,
to reduce the amount of data to be transmitted, thereby significantly reducing bandwidth usage. The tasks
needed to configure HTTP compression for objects in an Application Acceleration Manager policy node
are available in the Application Acceleration Manager, but an HTTP Compression profile must be enabled
for them to function.

About Web Acceleration profiles

When used by BIG-IP® Local Traffic Manager without other provisioned modules, the Web Acceleration
profile uses basic default acceleration.

Web Acceleration profile settings

82

This table describes the Web Acceleration profile configuration settings and default values.

Setting Value Description
Name No default Specifies the name of the profile.
Parent Profile |Selected Specifies the selected predefined or user-defined profile.
predefined or
user-defined
profile
Partition / Path | Common Specifies the partition and path to the folder for the profile objects.
Cache Size 100 This setting specifies the maximum size in megabytes (MB) reserved
for the cache. When the cache reaches the maximum size, the system
starts removing the oldest entries.
Maximum 10000 Specifies the maximum number of entries that can be in the cache.
Entries

BIG-IP® Local Traffic Manager™: Concepts

Setting

Value

Description

Maximum Age

3600

Specifies how long in seconds that the system considers the cached
content to be valid.

Minimum
Object Size

500

Specifies the smallest object in bytes that the system considers eligible
for caching.

Maximum
Object Size

50000

Specifies the largest object in bytes that the system considers eligible
for caching.

URI Caching

Not Configured

Specifies whether the system retains or excludes certain Uniform
Resource Identifiers (URIs) in the cache. The process forces the system
either to cache URISs that typically are ineligible for caching, or to not
cache URIs that typically are eligible for caching.

URI List

No default value

Specifies the URIs that the system either includes in or excludes from
caching.

» Pin List. Lists the URISs for responses that you want the system to
store indefinitely in the cache.

» Include List. Lists the URISs that are typically ineligible for caching,
but the system caches them. When you add URIs to the Include
List, the system caches the GET methods and other methods,
including non-HTTP methods.

» Exclude List. Lists the URISs that are typically eligible for caching,
but the system does not cache them.

* Include Override List. Lists URIs to cache, though typically, they
would not be cached due to defined constraints, for example, the
Maximum Object Size setting. The default value is none. URIs in
the Include Override List list are cacheable even if they are not
specified in the Include List.

Ignore Headers

All

Specifies how the system processes client-side Cache-Control
headers when caching is enabled.

* None. Specifies that the system honors all Cache-Control
headers.

» Cache-Control:max-age. Specifies that the system disregards a
Cache-Control :max-age request header that has a value of
max-age=0.

» All Specifies that the system disregards all Cache-Control
headers.

Insert Age
Header

Enabled

Specifies, when enabled, that the system inserts Date and Age headers
in the cached entry. The Date header contains the current date and
time on the BIG-IP" system. The Age header contains the length of
time that the content has been in the cache.

Aging Rate

Specifies how quickly the system ages a cache entry. The aging rate
ranges from 0 (slowest aging) to 10 (fastest aging).

AM
Applications

No default

Lists enabled Application Acceleration Manager applications in the
Enabled field and available applications in the Available field.

Web Acceleration Profile statistics description

This topic provides a description of Web Acceleration Profile statistics produced in tmsh.

83

Other Application-Layer Profiles

Viewing Web Acceleration profile statistics

Statistics for the Web Acceleration Profile can be viewed in tmsh by using the following command.

tmsh show /ltm profile web-acceleration <profile name>

Each statistic is described in the following example, appended after the asterisk (*).

Virtual Server Name N/A

Cache
Cache Size (in Bytes) *current cache size for this profile
Total Cached Items *items in local cache
Total Evicted Items *count of items that have been evicted

from the local cache

Inter-Stripe Size (in Bytes) *all the remote tmms cache
Inter-Stripe Cached Items *remote tmms count of cached items
Inter-Stripe Evicted Items *remote tmms count of cached items

that have been evicted

Cache Hits/Misses Count Bytes
Hits 0 0 *tmm local cache served
response
Misses (Cacheable) 0 0 *tmm local cache items that

match a rule set but are
not in cache

Misses (Total) 0 0 *tmm local cache items that
either match or do not match
rule set and are not served
from cache

Inter-Stripe Hits 0 0 *successful local access of
remote caches

Inter-Stripe Misses 0 - *unsuccessful local access
of remote caches

Remote Hits 0 0 “*successful remote tmms
accessing local cache

Remote Misses 0 - *unsuccessful remote tmms

accessing local cache

FTP profiles

Local Traffic Manager includes a profile type that you can use to manage File Transfer Protocol (FTP)
traffic. You can tailor FTP profile settings to your specific needs. For those settings that have default values,
you can retain those default settings or modify them. You can modify any settings either when you create
the profile, or at any time after you have created it.

The Translate Extended value

Because IP version 6 addresses are not limited to 32 bits (unlike IP version 4 addresses), compatibility
issues can arise when using FTP in mixed IP-version configurations.

By default, Local Traffic Manager automatically translates FTP commands when a client-server configuration
contains both IP version 4 (IPv4) and IP version 6 (IPv6) systems. For example, if a client system running
IPv4 sends the FTP PASV command to a server running IPv6, Local Traffic Manager automatically translates
the PASV command to the equivalent FTP command for IPv6 systems, EPSV.

84

BIG-IP® Local Traffic Manager™: Concepts

Local Traffic Manager translates the FTP commands EPRV and PORT in the same way.

Inherit Parent Profile

When you configure the BIG-IP® system to process FTP traffic, the FTP virtual server fully proxies the
control channel, allowing you to use the optimization settings of the client-side and server-side TCP profiles
assigned to the virtual server.

However, the profile settings of the FTP control channel are not passed down to the FTP data channel by
default. Instead, the FTP data channel uses a Fast L4 flow, which is fully accelerated by Packet Velocity
ASIC to maximize performance (on applicable hardware platforms). A data channel using Fast L4 cannot
use the same full-proxy TCP optimizations that exist for the control channel.

To take advantage of these optimizations for the FTP data channel, you can enable the Inherit Parent Profile
setting of the FTP profile. Enabling this setting disables Fast L4 for the FTP data channel, and instead allows
the data channel to use the same TCP profile settings that the control channel uses.

Data Port
The Data Port setting allows the FTP service to run on an alternate port. The default data port is 20.

Security for FTP traffic

When the BIG-IP system includes a license for the BIG-IP® Application Security Manager ", you can enable
a security scan for FTP traffic.

DNS profiles

You can create a custom DNS profile to enable various features such as converting IPv6-formatted addresses
to IPv4 format, enabling DNS Express , and enabling DNSSEC.

RTSP profiles

Local Traffic Manager” includes a profile type that you can use to manage Real Time Streaming Protocol
(RTSP) traffic. Real Time Streaming Protocol (RTSP) is a protocol used for streaming-media presentations.
Using RTSP, a client system can control a remote streaming-media server and allow time-based access to
files on a server.

The RTSP profile in Local Traffic Manager supports these features:

* The setup of streaming media over UDP. In this case, the control connection opens the required ports
to allow data to flow through the BIG-IP" system.

* Interleaved data over the control connection, essentially streaming media over TCP.

+ Real Networks tunneling of RTSP over HTTP, through the RTSP port (554).

A common configuration for the RTSP profile is one that includes RTSP clients and media servers, as well
as RTSP proxies to manage accounting and authentication tasks. In this proxied configuration, you most
likely want the streaming media from the servers to pass directly to the client, bypassing the RTSP proxy
servers.

To implement this configuration, you configure Local Traffic Manager by creating two virtual servers, one
for processing traffic to and from the external network, and one for processing traffic to and from the internal
network. For each virtual server, you assign a separate RTSP profile.

85

Other Application-Layer Profiles

With this configuration:

» The RTSP profile on the external virtual server passes client IP address information to the RTSP profile
on the internal virtual server.

» The RTSP profile on the internal virtual server extracts the client IP address information from the request,
processes the media server’s response, and opens the specified ports on the BIG-IP system. Opening
these ports allows the streaming media to bypass the RTSP proxy servers as the data travels from the
server to the client.

The client IP address information is stored in the Proxy Header setting that you specify in the RTSP profile.

ICAP profiles

You can configure one or more Internet Content Adaptation Protocol (ICAP) profiles when you want to
use the BIG-IP® content adaptation feature for adapting HTTP requests and responses. This feature allows
a BIG-IP virtual server to conditionally forward HTTP requests and HTTP responses to a pool of ICAP
servers for modification, before sending a request to a web server or returning a response to the client system.

In a typical configuration, you create two ICAP profiles:

* You assign one of the profiles to a virtual server of type Internal that sends HTTP requests to a pool of
ICAP servers.

* You assign the other profile to a virtual server of type Internal that sends HTTP responses to a pool of
ICAP servers.

For more information on content adaptation for HTTP traffic, see the guide titled BIG-IP" Local Traffic
Manager: Implementations, available on the AskF 5" knowledge base at http://support.f5.com.

Request Adapt and Response Adapt profiles

You can configure a Request Adapt or Response Adapt profile when you want to use the BIG-IP" content
adaptation feature for adapting HTTP requests and responses. A Request Adapt or Response Adapt profile
instructs an HTTP virtual server to send a request or response to a named virtual server of type Internal, for
possible modification by an Internet Content Adaptation Protocol (ICAP) server.

For more information on content adaptation for HTTP traffic, see the guide titled BIG-IP® Local Traffic
Manager: Implementations, available on the AskF5" knowledge base at http://support.£5.com.

Diameter profiles

86

Local Traffic Manager includes a profile type that you can use to manage Diameter traffic. The Diameter
protocol is an enhanced version of the Remote Authentication Dial-In User Service (RADIUS) protocol.

When you configure a Diameter type of profile, the BIG-IP” system can send client-initiated Diameter
messages to load balancing servers. The BIG-IP system can also ensure that those messages persist on the
servers.

BIG-IP® Local Traffic Manager™: Concepts

RADIUS profiles

The BIG-IP" system includes a profile type that you can use to load balance Remote Authentication Dial-In
User Service (RADIUS) traffic.

When you configure a RADIUS type of profile, the BIG-IP system can send client-initiated RADIUS
messages to load balancing servers. The BIG-IP system can also ensure that those messages are persisted
on the servers.

SIP profiles

Local Traffic Manager ~ includes a services profile that you can use to manage Session Initiation Protocol
(SIP) traffic. Session Initiation Protocol is an application-layer protocol that manages sessions consisting
of multiple participants, thus enabling real-time messaging, voice, data, and video. A session can be a simple
two-way telephone call or Instant Message dialogue, or a complex, collaborative, multi-media conference
call that includes voice, data, and video.

SIP sessions, which are application level sessions, run through one of three Layer 4 protocols: SCTP, TCP,
or UDP. The SIP profile configures how the system handles SIP sessions. The specified Layer 4 protocol
profile configures the virtual server to open the required port to allow data to flow through the BIG-IP”
system. When you assign a SIP profile to a virtual server, you can also assign an SCTP, TCP, or UDP profile
to the server. If you do not assign one of these protocol profiles to the server, Local Traffic Manager
automatically assigns one for you.

The SIP profile automatically configures the BIG-IP system to handle persistence for SIP sessions using
Call-ID. The Call-ID is a globally unique identifier that groups together a series of messages, which are
sent between communicating applications. You can customize how the system handles persistence for SIP
sessions.

Maximum message size

Local Traffic Manager accepts incoming SIP messages that are 65535 bytes or smaller. If a SIP message
exceeds this value, the system drops the connection.

Dialog snooping

Local Traffic Manager can snoop SIP dialog information and automatically forward SIP messages to the
known SIP dialog. To forward these messages, you can specify a SIP proxy functional group.

Community string

You can specify the name of a proxy functional group. You use this setting in the case where you need
multiple virtual servers, each referencing a SIP-type profile, and you want more than one of those profiles
to belong to the same proxy functional group.

Connection termination criteria

Local Traffic Manager terminates a SIP connection when either the application that initiated the session
(client) or the application that answered the initiated session (server) issues a BYE transaction. This is
appropriate when a SIP session is running on UDP. However, if a SIP session is running on a SCTP or TCP
connection, you can prevent the system from terminating the SIP connection.

87

Other Application-Layer Profiles

SIP headers

An optional feature in a SIP profile is header insertion. You can specify whether Local Traffic Manager
inserts Via, Secure Via, and Record-Route headers into SIP requests. When you assign the configured SIP
profile to a virtual server, Local Traffic Manager then inserts the header specified in the profile into any
SIP request that Local Traffic Manager sends to a pool or pool member.

SIP OneConnect

The SIP OneConnect " feature allows connection flow reuse between inbound and outbound virtual servers
for UDP connections. This feature addresses common SIP client behavior where source and destination
ports are both 5060.

SIP OneConnect features a built-in dialog-aware behavior that addresses scenarios where the BIG-IP is the
intermediary between more than two parties, creating an ambiguity between source and destination for the
dialog. For example, in scenarios where an internal client initiates an outbound call using the wildcard
virtual server to an external client that already has an existing flow on the inbound virtual server, the SIP
OneConnect dialog-aware behavior correctly routes the response traffic.

Note: The SIP OneConnect dialog-aware feature is independent of the Dialog Aware setting in the SIP
profile and is activated as long as two SIP profiles have identical community strings.

Activating SIP OneConnect

To activate the SIP OneConnect feature, type identical community strings in both SIP profiles used for the
two virtual servers responsible for inbound and outbound SIP connections.

To disable the SIP OneConnect dialog-aware behavior and re-enable the default dialog-aware behavior,
check the Dialog Aware setting when both community strings are set.

SMTP profiles

88

You can create an SMTP profile to secure SMTP traffic coming into the BIG-IP system. When you create
an SMTP profile, BIG-IP” Protocol Security Manager provides several security checks for requests sent
to a protected SMTP server:

* Verifies SMTP protocol compliance as defined in RFC 2821.

* Validates incoming mail using several criteria.

+ Inspects email and attachments for viruses.

* Applies rate limits to the number of messages.

+ Validates DNS SPF records.

* Prevents directory harvesting attacks.

+ Disallows or allows some of the SMTP methods, such as VRFY, EXPN, and ETRN, that spam senders
typically use to attack mail servers.

* Rejects the first message from a sender, because legitimate senders retry sending the message, and spam
senders typically do not. This process is known as greylisting. The system does not reject subsequent
messages from the same sender to the same recipient.

With an SMTP profile configured, the system either generates an alarm for, or blocks, any requests that
trigger the security check.

Note: The SMTP profile is only available for BIG-IP systems that are licensed for BIG-IP® Protocol Security
Managerm.

BIG-IP® Local Traffic Manager™: Concepts

SMTPS profiles

The SMTPS profile provides a way to add SSL encryption to SMTP traffic quickly and easily. SMTPS is
a method for securing Simple Mail Transport Protocol (SMTP) connections at the transport layer.

Normally, SMTP traffic between SMTP servers and clients is unencrypted. This creates a privacy issue
because SMTP traffic often passes through routers that the servers and clients do not trust, resulting in a
third party potentially changing the communications between the server and client. Also, two SMTP systems
do not normally authenticate each other. A more secure SMTP server might only allow communications
from other known SMTP systems, or the server might act differently with unknown systems.

To mitigate these problems, the BIG-IP system includes an SMTPS profile that you can configure. When
you configure an SMTPS profile, you can activate support for the industry-standard STARTTLS extension
to the SMTP protocol, by instructing the BIG-IP system to either allow, disallow, or require STARTTLS
activation for SMTP traffic. The STARTTLS extension effectively upgrades a plain-text connection to an
encrypted connection on the same port, instead of using a separate port for encrypted communication.

This illustration shows a basic configuration of a BIG-IP system that uses SMTPS to secure SMTP traffic
between the BIG-IP system and an SMTP mail server.

s ™
Profiles:
TCP
T icat SMTPS SMTP (Clear Taxt)
SMTP (Application Layer) . Client SSL : J
-
- Standard
TLS {Transport Layer) Virtual Servar
End-user Mail Server
System N S
BIG-IP System

Figure 3: Sample BIG-IP configuration for SMTP traffic with STARTTLS activation

About iSession profiles

The iSession” profile tells the system how to optimize traffic. Symmetric optimization requires an iSession
profile at both ends of the iSession connection. The system-supplied parent iSession profile isession, is
appropriate for all application traffic, and other iSession profiles have been pre-configured for specific
applications. The name of each pre-configured iSession profile indicates the application for which it was
configured, such as isession-cifs.

When you configure the iSession local endpoint on the Quick Start screen, the system automatically associates
the system-supplied iSession profile i session with the iSession listener isession-virtual it creates
for inbound traffic.

You must associate an iSession profile with any virtual server you create for a custom optimized application
for outbound traffic, and with any iSession listener you create for inbound traffic.

Screen capture showing compression settings

The following screen capture shows the pertinent compression settings.

89

Other Application-Layer Profiles

Note: If adaptive compression is disabled, you must manually select a compression codec for iSession"
traffic. If you leave the other codecs enabled, the BIG-IP" system selects the bzip2 compression algorithm
by default, and that might not be the algorithm you want.

| onumr jacTve
i | Sandsicne
L

@ Satisics
General Propariies
E ad HName |
(74 Locet Traffic Farunt Prodle lesssion -
Hetwiek Map
Iebwoik Map c ——r Cusbom|+
n— s —
Y A Comgression [Enabied = c
Profisas
Defate L
Rules i
- Diefiate Level [1=]
Poals 4
Hodes Lo Il:rr.llrd T o
Wangars Bdp2 | Enatied = L
Trafic Class Adapive . el
st Dedupkcation Endtled = Ci
S3L Cerhcate List
Custom
DNS Expeass Zones Cwtbound | Session ko Was
Reuse Conmecion Ihra Eled
l'l.'_. e Porl Transparency Il:ra:llrd -
% Devic Manasgomenn Apphcation Cata Encrplion [Disabied -
= Inbound iSession from WAN e
Target ¥irtual maich all

[L¥] systam

‘Cancel| [Repeal | [Finished |

Figure 4: iSession profile screen with compression settings emphasized

Rewrite profiles

90

For environments that use web servers, you might want your websites to appear differently on the external
network than on the internal network. For example, you might want the BIG-IP® system to send traffic
destined for www . company.com/usa/ to the internal server usa.company . com instead. Normally, this
translation could cause some issues, such as the web server expecting to see a certain host name (such as
for name-based virtual hosting) or the web server using the internal host name when sending a redirect to
client systems.

You can solve these problems by configuring a Rewrite profile, which causes the BIG-IP system to act as
a reverse proxy server. As a reverse proxy server, the BIG-IP system offloads the URI translation function
from web servers enabled with features such as Apache's ProxyPass module. With a Rewrite profile, the
BIG-IP system can perform URI scheme, host, port, and path modifications as HTTP traffic passes through
the system. The feature also provides reverse translation for the Location, Content-Location, and URI
headers in the server response to the client.

Important: The BIG-IP reverse proxy feature replaces the ProxyPass iRule available on the F5 Networks
site http://devcentral.f5.com.

A typical use of a reverse proxy server is to grant Internet users access to application servers that are behind
a firewall and therefore have private IP addresses and unregistered DNS entries.

BIG-IP® Local Traffic Manager™: Concepts

About URI translation

You can configure the BIG-IP® system to perform URI translation on HTTP requests. Suppose that a
company named Siterequest has a website www. siterequest.com, which has a public IP address and
a registered DNS entry, and therefore can be accessed from anywhere on the Internet.

Furthermore, suppose that Siterequest has two application servers with private IP addresses and
unregistered DNS entries, inside the company's firewall. The application servers are visible within the
internal network as appserverl.siterequest.comand appserver2.siterequest.com.

Because these servers have no public DNS entries, any client system that tries to access one of these servers
from outside the company network receives a no such host error.

As the illustration shows, you can prevent this problem by configuring the BIG-IP system to act as a reverse
proxy server:

Client Systems

hitp:/'www.siterequest.com/app1 hitp:/fwww.siterequest.com/app2

Internet

http://appserver1.siterequest.com/app1 http://appserver2. siterequest.com/app2
appserver! appserver2
.siterequest.com siterequest.com
= =
Web Servers

Figure 5: The BIG-IP system as a reverse proxy server for URI translation

In the example, the company Siterequest has decided to enable Web access to the internal application
servers, without exposing them to the Internet directly. Instead, the company has integrated the servers with
the web server siterequest.comsothathttp://www.siterequest.com/sales is mapped internally
tohttp://appserverl.siterequest.com/sales,and http://siterequest.com/marketing is
mapped internally to http://appserver2.example.com/marketing. This is a typical reverse-proxy
configuration.

To configure the BIG-IP system to perform this translation, you create a Rewrite profile and configure one
or more URI rules. A URI rule specifies the particular URI translation that you want the BIG-IP system to
perform. Specifically, a URI rule translates the scheme, host, port, or path of any client URI, server URI,
or both. A URI rule also translates any domain and path information in the Set-Cookie header of the
response when that header information matches the information in the URI rule.

Rules for matching requests to URI rules

The BIG-IP” system follows these rules when attempting to match a request to a URI rule:

91

Other Application-Layer Profiles

* A request does not need to match any entry. That is, if no entries match and there is no catch-all entry,
then the Rewrite profile has no effect.

» Each request matches one entry only, which is the entry with the most specific host and path.

+ If multiple entries match, then the BIG-IP system uses the entry with the deepest path name on the left
side of the specified mapping.

+ The BIG-IP system matches those requests that contain host names in URIs before matching requests
that do not contain host names in URIs.

» The BIG-IP system processes the specified entries in the mapping from most-specific to least-specific,
regardless of the order specified in the actual Rewrite profile.

About URI Rules

When creating a URI rule, you must specify the client and server URIs in these ways:

* When the URI is a path prefix only, the path must be preceded by and followed by a /, for example,
/sales/.

* When the URI contains more than the path prefix (such as, a host), the URI must also contain a scheme
and must be followed by a /, for example, http://www.siterequest/sales/.

About Set-Cookie header translation

A URI rule automatically performs translation on any domain and path information in the Set-Cookie
header of a response when that header information matches the information in the URI rule.

When the set-Cookie header information that you want the BIG-IP® system to translate does not match
the information in an existing URI rule, you can create a separate Set-Cookie rule to perform this translation.
You need to create a Set-Cookie rule only when the header information does not match the information
specified in an existing URI rule.

The specific parts of the Set-Cookie header that you can specify for translation are:

e Client domain
* Client path
» Server domain
* Server path

You can specify that the BIG-IP system translate all of this information or a subset of this information,
depending on your needs.

XML profiles

92

You can use the BIG-IP® system to perform XML content-based routing whereby the system routes requests
to an appropriate pool, pool member, or virtual server based on specific content in an XML document. For
example, if your company transfers information in XML format, you could use this feature to examine the
XML content with the intent to route the information to the appropriate department.

You can configure content-based routing by creating an XML profile and associating it with a virtual server.
In the XML profile, define the matching content to look for in the XML document. Next, specify how to
route the traffic to a pool by writing simple iRules”. When the system discovers a match, it triggers an iRule
event, and then you can configure the system to route traffic to a virtual server, a pool, or a node.

BIG-IP® Local Traffic Manager™: Concepts

The following example shows a simple XML document that the system could use to perform content-based
routing. It includes an element called FinanceObject used in this implementation.

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:eai="http://192.168.149.250/eai enu/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<soapenv:Header/>
<soapenv:Body>
<eai:SiebelEmployeeDelete
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<FinanceObject xsi:type="xsd:string">Route to
Financing</FinanceObject>
<SiebelMessage xsi:type="ns:ListOfEmployeeInterfaceTopElmt"
xmlns:ns="http://www.siebel.com/xml">
<ListOfEmployeelnterface
xsi:type="ns:ListOfEmployeeInterface">
<SecretKey>123456789</SecretKey>
<Employee>John</Employee>
<Title>CEO</Title>
</ListOfEmployeeInterface>
</SiebelMessage>
</eai:SiebelEmployeeDelete>
</soapenv:Body>
</soapenv:Envelope>

SPDY profiles

You can use the BIG-IP® Local Traffic Manager SPDY (pronounced "speedy") profile to minimize latency
of HTTP requests by multiplexing streams and compressing headers. When you assign a SPDY profile to
an HTTP virtual server, the HTTP virtual server informs clients that a SPDY virtual server is available to
respond to SPDY requests.

When a client sends an HTTP request, the HTTP virtual server manages the request as a standard HTTP
request. It receives the request on port 80, and sends the request to the appropriate server. When the server
provides a response, the BIG-IP system inserts an HTTP header into the response (to inform the client that
a SPDY virtual server is available to handle SPDY requests), compresses and caches it, and sends the
response to the client.

A client that is enabled to use the SPDY protocol sends a SPDY request to the BIG-IP system, the SPDY
virtual server receives the request on port 443, converts the SPDY request into an HTTP request, and sends
the request to the appropriate server. When the server provides a response, the BIG-IP system converts the
HTTP response into a SPDY response, compresses and caches it, and sends the response to the client.

Summary of SPDY profile functionality

By using the SPDY profile, the BIG-IP Local Traffic Manager system provides the following functionality
for SPDY requests.

Creating concurrent streams for each connection.
You can specify the maximum number of concurrent HTTP requests that are accepted on a SPDY
connection. If this maximum number is exceeded, the system closes the connection.

93

Other Application-Layer Profiles

Limiting the duration of idle connections.
You can specify the maximum duration for an idle SPDY connection. If this maximum duration is
exceeded, the system closes the connection.

Enabling a virtual server to process SPDY requests.
You can configure the SPDY profile on the virtual server to receive both HTTP and SPDY traffic, or
to receive only SPDY traffic, based in the activation mode you select. (Note that setting this to receive
only SPDY traffic is primarily intended for troubleshooting.)

Inserting a header into the response.
You can insert a header with a specific name into the response. The default name for the header is
X-SPDY.

Important: The SPDY protocol is incompatible with NTLM protocols. Do not use the SPDY protocol with
NTLM protocols. For additional details regarding this limitation, please refer to the SPDY specification:
http://dev.chromium.orqg/spdy/spdy—-authentication.

SPDY profile settings

94

This table provides descriptions of the SPDY profile settings.

Setting Default | Description

Name Type the name of the SPDY profile.

Parent Profile spdy Specifies the profile that you want to use as the parent profile. Your new
profile inherits all settings and values from the parent profile specified.

Concurrent 10 Specifies how many concurrent requests are allowed to be outstanding

Streams Per on a single SPDY connection.

Connection

Connection Idle |300 Specifies how many seconds a SPDY connection is left open idly before

Timeout it is closed.

Activation Mode |NPN Specifies how a connection is established as a SPDY connection. The

value NPN specifies that the Transport Layer Security (TLS) Next
Protocol Negotiation (NPN) extension determines whether the SPDY
protocol is used. Clients that use TLS, but only support HTTP will work
as if SPDY is not present. The value Always specifies that all connections
must be SPDY connections, and that clients only supporting HTTP are
not able to send requests. Selecting Always in the Activation Mode list
is primarily intended for troubleshooting.

Insert Header Disabled | Specifies whether an HTTP header that indicates the use of SPDY is
inserted into the request sent to the origin web server.

Insert Header X-SPDY | Specifies the name of the HTTP header controlled by the Insert Header
Name Name setting.

Protocol Versions | All Used only with an Activation Mode selection of NPN, specifies the
Versions | protocol and protocol version (http1.1, spdy2, spdy3, or All Version
Enabled |Enabled) used in the SPDY profile. The order of the protocols in the
Selected Versions Enabled list ranges from most preferred (first) to
least preferred (last). Adding http1.1 to the Enabled list allows HTTP1.1
traffic to pass. If http1.1 is not added to the Enabled list, clients that do
not support httpl.1 are blocked. Clients typically use the first supported

BIG-IP® Local Traffic Manager™: Concepts

Setting Default | Description
protocol. At least one SPDY version must be included in the Enabled
list.

Priority Handling | Strict Specifies how the SPDY profile handles priorities of concurrent streams

within the same connection. Selecting Strict processes higher priority
streams to completion before processing lower priority streams. Selecting
Fair enables higher priority streams to use more bandwith than lower
priority streams, without completely blocking the lower priority streams.

Receive Window | 32 Specifies the receive window, which is SPDY protocol functionality that
controls flow, in KB. The receive window allows the SPDY protocol to
stall individual upload streams when needed. This functionality is only
available in SPDY3.

Frame Size 2048 Specifies the size of the data frames, in bytes, that the SPDY protocol
sends to the client. Larger frame sizes improve network utilization, but
can affect concurrency.

Write Size 16384 Specifies the total size of combined data frames, in bytes, that the SPDY
protocol sends in a single write function. This setting controls the size
of the TLS records when the SPDY protocol is used over Secure Sockets
Layer (SSL). A large write size causes the SPDY protocol to buffer more
data and improves network utilization.

SOCKS profiles

You can use the BIG-IP” Local Traffic Manager SOCKS profile to configure the BIG-IP system to handle
proxy requests and function as a gateway. By configuring browser traffic to use the proxy, you can control
whether to allow or deny a requested connection. To implement the profile, you must associate it with a
virtual server.

Protocol Versions
You can specify one or more versions of SOCKS.

* Socks4 indicates protocol support for SOCKS version 4.
* Socks4A indicates protocol support for SOCKS 4A, which adds host name support to version 4.
* SocksS5 specifies protocol support for SOCKS version 5, which includes host name and IPv6 support.

DNS Resolver
You must specify a DNS resolver to use for DNS inquiries handled by the virtual servers associated
with this profile. If no DNS resolver exists on the system, you can create one at DNS > Caches > Cache
List > Create.

Route Domain
You can specify a route domain to be used for outbound connect requests.

Tunnel Name
You must specify a tunnel that is used for outbound connect requests, enabling other virtual servers to
receive connections initiated by the proxy service. A pre-configured tunnel socks-tunnel is available.

Default Connect Handling
You can specify the behavior of the proxy service when handling outbound requests.

95

Other Application-Layer Profiles

» Enabled (checked) indicates that the proxy service delivers outbound requests directly, regardless
of the presence of listening servers.

» Disabled (check box cleared) indicates that the proxy service delivers outbound requests only if
another virtual server is listening on the tunnel for the requested outbound connection. With this
setting, virtual servers are required, and the system processes the outbound traffic before it leaves
the device.

FIX profiles

The BIG-IP® system Local Traffic Manager (LTM®) FIX profile provides you with the ability to use
Financial Information eXchange (FIX) protocol messages in routing, load balancing, persisting, and logging
connections. The BIG-IP system uses the FIX profile to examine the header, body, and footer of each FIX
message, and then process each message according to the parameters that it contains.

The BIG-IP system supports FIX protocol versions 4.2, 4.4, and 5.0, and uses the key-value pair FIX message
format.

Important: You cannot configure or use the BIG-IP FIX Profile to provide low-latency electronic trading
functionality. Instead, you must implement low-latency electronic trading functionality separately.

About FIX profile tag substitution

The BIG-IP” system's FIX profile provides options for how the FIX messages should be parsed. Once
configured, the BIG-IP system compares the FIX profile's Mapping List Sender value (SenderCompID)
with the value received in the client message. If the values match, then the BIG-IP system provides tag
substitution as defined by the data group definition in the corresponding mapping list.

Example

Two or more clients can define a FIX tag differently. On the BIG-IP server side, you can define a dictionary
for each client that maps a client tag to a server tag. For example, a server might use 20001 for an analyst's
average price target, and 20002 as a client twitter feed name. Then, in the dictionary for the first client, the
tag 10001 is mapped to 20001, and, for the second client, the tag 30001 is mapped to 20001.

About steering traffic using the FIX profile

The BIG-IP® system's FIX profile can direct, or steer, FIX messages to a destination pool in accordance
with the FIX login message that it receives, and the configured iRules”. Once a pool member is selected,
which is only required one time for a connection, all messages in the same FIX session are forwarded, or
persisted, to that pool member.

About validating FIX messages

96

The BIG-IP" system validates each Financial Information eXchange (FIX) protocol message, allowing and
denying transmission accordingly. If a FIX message is valid, the BIG-IP system allows transmission, triggers
the FIX MESSAGE iRule event, and optionally logs the message. If a FIX message is invalid, the BIG-IP

system logs the error, and either disallows transmission or drops the connection, as configured by the profile.

BIG-IP® Local Traffic Manager™: Concepts

The BIG-IP system provides two types of parsing validation: full parsing validation and quick parsing
validation.

Full Parsing Validation

When full parsing validation is applied, all fields are validated.

Quick Parsing Validation
When quick parsing validation is applied, the following fields are validated.

» The first three fields: 8 (BeginString), 9 (BodyLength), and 35 (MsgType).

* The last field.

+ Field 49 (SenderComplID).

+ Fields requested by an iRule tag query command.

+ Fields in the message that precede the fields requested by an iRule tag query command.

For example, consider the following message: 8=F1X.4.2]9=100|35-A|600=x|700=Y|800=2....In
this example, the first three fields are always parsed: 8, 9, and 35. If the iRule command FIX::tag 700
runs, then the fields preceding 700 in the example are parsed, specifically 600 (in addition to the first three
fields).

The following table describes the different types of quick parsing validation that the BIG-IP system provides.

FIX Message

Description

Quick Parsing
Validation

Example

Message sequence no <num>
from <senderCompID>
error: There is no = in
the field starting at
byte <byte offset of the

field>

Message sequence no <num>
from <senderCompID>
error: the field starting
at byte <byte offset of
the field> has invalid
tag

Message sequence no <num>
from <senderCompID>
error: there is no value
found in the field
starting at byte <byte

offset of the field>

The first (second, third)
tag should be 8 (9, 35),
but get <wrong value>
from < senderCompID>

Length mismatch: message
sequence no <num> from
<senderCompID> should be
tagl0 after <length>
bytes,
<vall val2>

but encounter

Field is not in the
format of tag=val.

The tag is not an
integer.

A value is missing.

The first three tags are
not 8, 9, and 35.

The length is
mismatched.

This error is partially
checked when using
quick parsing
validation.

This error is partially
checked when using
quick parsing
validation.

This error is partially
checked when using
quick parsing
validation.

This error is fully
checked when using
quick parsing
validation.

This error is fully
checked when using
quick parsing
validation.

35=A;123xyz;. The
second field is missing
an = sign.

35=A; abc=xyz;.The
tag abc in the second
field is not an integer.

35=A;50=;. The
second field is missing
a value.

None.

None.

97

Other Application-Layer Profiles

FIX Message Description Quick Parsing Example
Validation

Checksum mismatch: The checksum is This error is fully None.

message sequence <num> mismatched. checked when using

from <senderCompID> quick parsing

declares checksum as validation

<claimed value>, but
calculated checksum from
received data is <real

value>
Message from <IP address> The message lengthis This error is fully None.
is longer than allowed greater than 4MB. checked when using

quick parsing

validation.

About using SSL encryption for FIX messages

You can configure a virtual server to use client and server SSL encryption with FIX protocol messages, as
necessary, for transactions across the Internet, or for compliance purposes.

About logging FIX messages

The BIG-IP” system provides optional logging of each FIX message for auditing purposes. You can log
events either locally on the BIG-IP system or remotely, using the BIG-IP system’s high-speed logging
mechanism. The recommended way to store logs is on a pool of remote logging servers.

For local logging, the high-speed logging mechanism stores the logs in either the Syslog or the MySQL
database on the BIG-IP system, depending on a destination that you define. For remote logging, the high-speed
logging mechanism sends log messages to a pool of logging servers that you define.

Video Quality of Experience profiles

The BIG-IP” system's video Quality of Experience (QoE) profile enables you to assess an audience's video
session or overall video experience, providing an indication of customer satisfaction. The QoE profile uses
static information, such as bitrate and duration of a video, and video metadata, such as URL and content
type, in monitoring video streaming. Additionally, the QoE profile monitors dynamic information, such as
the variable video downloading rate. By measuring the video playing rate and downloading rate, the user
experience can be assessed and defined in terms of a single mean opinion score (MOS) of the video session,
and a level of customer satisfaction can be derived. QoE scores are logged in the 1tm log file, located in
/var/log, which you can evaluate as necessary.

About the video Quality of Experience profile
The BIG-IP” system's video Quality of Experience (QoE) profile enables you to assess an audience's video

session or overall video experience, providing an indication of customer satisfaction. The QoE profile uses
static information, such as bitrate and duration of a video, and video metadata, such as URL and content

98

BIG-IP® Local Traffic Manager™: Concepts

type, in monitoring video streaming. Additionally, the QoE profile monitors dynamic information, which
reflects the real-time network condition.

By considering both the static video parameters and the dynamic network information, the user experience
can be assessed and defined in terms of a single mean opinion score (MOS) of the video session, and a level
of customer satisfaction can be derived. QoE scores are logged in the 1tm log file, located in /var/log,
which you can evaluate as necessary.

Note that for QoE to properly process video files, the video web servers must be compliant with supported
video MIME types, for example, the following MIME types.

MIME Type Suffix
video/mp4 .fav
video/mp4 .mp4
video/x-flv Lflv
video/x-mdv .mév
video/quicktime .mév
application/x-mpegURL .m3u8
video/mp2t .ts

About mean opinion score

The video Quality of Experience (QoE) profile provides a mean opinion score (MOS), derived from static
and dynamic parameters associated with a video stream. The following table summarizes the resultant
values.

MOS Quality Description

5 Excellent Indicates a superior level of quality, with imperceptible degradation in the video
stream.

4 Good Indicates an above-average level of quality, with perceptible degradation that is
acceptable.

3 Fair Indicates an average level of quality, with perceptible degradation that detracts from

the video experience.

2 Poor Indicates a below-average level of quality, with perceptible degradation that
significantly detracts from the video experience.

| Bad Indicates a substandard level of quality, with perceptible degradation that proves to
be significantly inferior and potentially unacceptable.

99

Content Profiles

Introduction to HTML content modification

When you configure an HTML profile on the BIG-IP” system, the system can modify HTML content that
passes through the system, according to your specifications. For example, if you want the BIG-IP system
to detect all content of type text/html and then remove all instances of the HTML img tag with the src
attribute, you can configure an HTML profile accordingly, and assign it to the virtual server. The HTML
profile ensures that the BIG-IP system removes those instances of the tag from any HTML content that
passes through the virtual server.

Or, you can configure an HTML profile to match on a certain tag and attribute in HTML content when a
particular iRule event is triggered, and then create an iRule that includes a command to replace the value
of the matched attribute with a different attribute. The BIG-IP system includes several iRule commands
that you can use when the Raise Event on Comment or Raise Event on Tag events are triggered.
For more information on iRule commands related to HTML content modification, see the F5 Networks web
site http://devcentral.f5.com.

HTML tag removal and replacement are just two of several HTML rules that you can configure to manipulate
HTML content. An HTML rule defines the specific actions that you want the BIG-IP system to perform on
a specified type HTML content.

About content selection types

When you create an HTML type of profile, you can specify the type of content that you want the BIG-IP”
system to match on when determining which content to modify.

The types of content that you specify must be valid values for the Content-Type header of an HTTP
response.

Typical Content-Type header values that you can specify are:

o text/html

o text/xhtml

o text/xml

* text/javascript

You must specify at least one valid content type if you want the BIG-IP system to match content based on
an HTML rule that you create.

Types of HTML rules

You can create several different types of HTML rules for modifying HTML content.

Content Profiles

HTML rule Description

type

Remove Removes comments within HTML content. There are no matching and no actions
Comments associated with this type of HTML rule.

Raise Event on Raises an HTML _COMMENT MATCHED iRule event. There are no matching and no actions
Comments associated with this type of HTML rule.

Remove Matches on the specified tag name, attribute name, and attribute value, and then removes
Attribute the HTML tag attribute.

Append HTML Matches on the specified tag name, attribute name, and attribute value, and then appends
the specified HTML content to the tag delimiter.

Prepend HTML Matches on the specified tag name, attribute name, and attribute value, and then prepends
the specified HTML content to the tag delimiter.

Raise Event on Raises an HTML _TAG MATCHED iRule event. With this type of rule, you can match on

Tag the tag name, attribute name, and attribute value.
Remove Tag Matches on the specified tag name, attribute name, and attribute value, and then removes
the HTML tag.

Sample HTML rules configuration

102

When you create an HTML rule, you can specify the actions that you want the BIG-IP® system to take based

on that type of rule. The actions you specify vary depending on the type of HTML rule you are creating.

For example, suppose you want to replace this HTML content:

with:

To do this, you can create an HTML profile with a content selection type of text/html and the Raise
Event on Tag rule.

In the example, the Raise Event on Tag rule specifies these match settings:

Tag name: img

Attribute name: src

Attribute value: image/bigip8900.jpg

These settings instruct the BIG-IP system to match on any tag that includes the src attribute and
the attribute value image/bigip8900.7pg.

After creating the HTML profile, you can write an iRule that specifies the HTML._ TAG MATCHED event, as
well as the HTML: : tag attribute replace command, which specifies the new attribute value. When
the traffic reaches the virtual server, the BIG-IP system triggers the event, matches on the tag and attribute
specified in the HTML rule, and replaces the old attribute value with the new value specified in the iRule.

Session Persistence Profiles

Introduction to session persistence profiles

Using BIG-IP® Local Traffic Manager , you can configure session persistence. When you configure session
persistence, Local Traffic Manager tracks and stores session data, such as the specific pool member that
serviced a client request. The primary reason for tracking and storing session data is to ensure that client
requests are directed to the same pool member throughout the life of a session or during subsequent sessions.

In addition, session persistence can track and store other types of information, such as user preferences or
a user name and password.

Local Traffic Manager offers several types of session persistence, each one designed to accommodate a
specific type of storage requirement for session data. The type of persistence that you implement depends
on where and how you want to store client-specific information, such as items in a shopping cart or airline
ticket reservations.

For example, you might store airline ticket reservation information in a back-end database that all servers
can access, or on the specific server to which the client originally connected, or in a cookie on the client’s
machine. When you enable persistence, returning clients can bypass load balancing and instead connect to
the server to which they last connected in order to access their saved information.

Local Traffic Manager keeps session data for a period of time that you specify.

The primary tool for configuring session persistence is to configure a persistence profile and assign it to a
virtual server. If you want to enable persistence for specific types of traffic only, as opposed to all traffic
passing through the virtual server, you can write an iRule.

A persistence profile is a pre-configured object that automatically enables persistence when you assign the
profile to a virtual server. By using a persistence profile, you avoid having to write a program to implement
a type of persistence.

Each type of persistence that Local Traffic Manager offers includes a corresponding default persistence
profile. These persistence profiles each contain settings and setting values that define the behavior of the
BIG-IP system for that type of persistence. You can either use the default profile or create a custom profile
based on the default.

Persistence profile types

You can configure persistence profile settings to set up session persistence on the BIG-IP® system. You
can configure these settings when you create a profile or after profile creation by modifying the profile’s
settings.

The persistence types that you can enable using a persistence profile are:
Cookie persistence

Cookie persistence uses an HTTP cookie stored on a client’s computer to allow the client to reconnect
to the same server previously visited at a web site.

Session Persistence Profiles

Destination address affinity persistence
Also known as sticky persistence, destination address affinity persistence supports TCP and UDP
protocols, and directs session requests to the same server based solely on the destination IP address of
a packet.

Hash persistence
Hash persistence allows you to create a persistence hash based on an existing iRule.

Microsoft® Remote Desktop Protocol persistence
Microsoft® Remote Desktop Protocol (MSRDP) persistence tracks sessions between clients and servers
running the Microsoft® Remote Desktop Protocol (RDP) service.

SIP persistence
SIP persistence is a type of persistence used for servers that receive Session Initiation Protocol (SIP)
messages sent through UDP, SCTP, or TCP.

Source address affinity persistence
Also known as simple persistence, source address affinity persistence supports TCP and UDP protocols,
and directs session requests to the same server based solely on the source IP address of a packet.

SSL persistence
SSL persistence is a type of persistence that tracks non-terminated SSL sessions, using the SSL session
ID. Even when the client’s IP address changes, Local Traffic Manager™ still recognizes the connection
as being persistent based on the session ID. Note that the term non-terminated SSL sessions refers to
sessions in which Local Traffic Manager does not perform the tasks of SSL certificate authentication
and encryption/re-encryption.

Universal persistence
Universal persistence allows you to write an expression that defines what to persist on in a packet. The
expression, written using the same expression syntax that you use in iRules®, defines some sequence
of bytes to use as a session identifier.

Session persistence and iRules

Instead of configuring a persistence profile, which enables a persistence type for all sessions passing through
the virtual server, you can write an iRule, which enables a persistence type for particular requests (for
example, for HTTP traffic that includes a certain cookie version only).

You can also use an iRule to enable persistence for SSL-terminated requests, that is, requests that Local
Traffic Manager terminates by performing decryption and re-encryption and by handling SSL certificate
authentication. In iRules” of this type, you can use an HTTP header insertion iRule command to insert an
SSL session ID as a header into an HTTP request.

The OneConnect profile and session persistence

104

When you configure session persistence, Local Traffic Manager tracks and stores session data, such as
the pool member that serviced a client request. Configuring a persistence profile for a virtual server ensures
that client requests are directed to the same pool member throughout the life of a session or during subsequent
sessions.

BIG-IP® Local Traffic Manager™: Concepts

The Request-URI header in an HTTP request stores certain session data. Occasionally, however, for
Cookie and Universal persistence types specifically, Local Traffic Manager ignores the session data in this
header, and sends requests to an unexpected node. For example, this issue can occur when clients send
requests to a virtual server through an internet proxy device. You can prevent this problem by creating a
OneConnect” profile, and assigning both the OneConnect profile and the persistence profile to the virtual
server.

HTTP parsing with and without a OneConnect profile

If the virtual server does not reference a OneConnect profile, Local Traffic Manager performs load
balancing for each TCP connection. Once the TCP connection is load balanced, the system sends all requests
that are part of the connection to the same pool member.

For example, if the virtual server does not reference a OneConnect profile, and Local Traffic Manager
initially sends a client request to node A in pool A, the system inserts a cookie for node A. Then, within the
same TCP connection, if Local Traffic Manager receives a subsequent request that contains a cookie for
node B in pool B, the system ignores the cookie information and incorrectly sends the request to node S
instead.

Using a OneConnect type of profile ensures that the BIG-IP system does not ignore session data. If the
virtual server references a OneConnect profile, Local Traffic Manager can perform load balancing for
each request within the TCP connection. That is, when an HTTP client sends multiple requests within a
single connection, Local Traffic Manager is able to process each HTTP request individually. Local Traffic
Manager sends the HTTP requests to different destination servers if necessary.

For example, if the virtual server references a OneConnect profile and the client request is initially sent to
node A in pool A, Local Traffic Manager inserts a cookie for node A. Then, within the same TCP connection,
if Local Traffic Manager receives a subsequent request that contains a cookie for node B in pool B, the
system uses that cookie information and correctly sends the request to node B.

Criteria for session persistence

Regardless of the type of persistence you are implementing, you can specify the criteria that Local Traffic
Manager uses to send all requests from a given client to the same pool member. These criteria are based
on the virtual server or servers that are hosting the client connection. To specify these criteria, you use the
Match Across Services, Match Across Virtual Servers, and Match Across Pools profile settings.
Before configuring a persistence profile, it is helpful to understand these settings.

The Match Across Services setting

When you enable the Match Across Services profile setting, Local Traffic Manager — attempts to send all
persistent connection requests received from the same client, within the persistence time limit, to the same
node only when the virtual server hosting the connection has the same virtual address as the virtual server
hosting the initial persistent connection. Connection requests from the client that go to other virtual servers
with different virtual addresses, or those connection requests that do not use persistence, are load balanced
according to the load balancing method defined for the pool.

For example, suppose you configure virtual server mappings where the virtual server v1 : ht tp has persistence
enabled and references the http pool (containing the nodes nl:http and n2:http), and the virtual server

105

Session Persistence Profiles

v1:ssl has persistence enabled and references the pool ss1_pool (containing the nodes n1:ss1 and
n2:ssl).

Suppose the client makes an initial connection to v1 :http, and the load balancing algorithm assigned to
the pool http pool chooses nl:http as the node. If the client subsequently connects to v1:ss1, Local
Traffic Manager uses the persistence session established with the first connection to determine the pool
member that should receive the connection request, rather than the load balancing method. Local Traffic
Manager should then send the third connection request to n1 : ss1, which uses the same node as the n1 : http
node that currently hosts the client's first connection with which it shares a persistent session.

If the same client then connects to a virtual server with a different virtual address (for example, v2:ss1),
Local Traffic Manager starts tracking a new persistence session, using the load balancing method to determine
which node should receive the connection request. The system starts a new persistence session because the
requested virtual server uses a different virtual address (v2) than the virtual server hosting the first persistent
connection request (v1).

Important: In order for the Match Across Services setting to be effective, virtual servers that use the same
virtual address, as well as those that use SSL persistence, should include the same node addresses in the
virtual server mappings.

Note: With respect to Cookie profiles, this setting applies to the Cookie Hash method only.

The Match Across Virtual Servers setting

You can set Local Traffic Manager to maintain persistence for all sessions requested by the same client,
regardless of which virtual server hosts each individual connection initiated by the client. When you enable
the Match Across Virtual Servers setting, Local Traffic Manager attempts to send all persistent connection
requests received from the same client, within the persistence time limit, to the same node. Connection
requests from the client that do not use persistence are load balanced according to the currently selected
load balancing method.

Note: With respect to Cookie profiles, this setting applies to the Cookie Hash method only.

Warning: In order for this setting to be effective, virtual servers that use pools with TCP or SSL persistence
should include the same member addresses in the virtual server mappings.

The Match Across Pools setting

106

When you enable the Match Across Pools setting, Local Traffic Manager can use any pool that contains
a given persistence record. The default is disabled (cleared).

Warning: Enabling this setting can cause Local Traffic Manager to direct client traffic to a pool other
than that specified by the virtual server.

With respect to Cookie profiles, this setting applies to the Cookie Hash method only.

BIG-IP® Local Traffic Manager™: Concepts

Cookie persistence

You can set up Local Traffic ManagerTM to use HTTP cookie persistence. Cookie persistence uses an HTTP
cookie stored on a client’s computer to allow the client to reconnect to the same pool member previously
visited at a web site.

There are four methods of cookie persistence available:

* HTTP Cookie Insert method

e HTTP Cookie Rewrite method
e HTTP Cookie Passive method
* Cookie Hash method

The method you choose to use affects how Local Traffic Manager returns the cookie when returning the
cookie to the client.

HTTP Cookie Insert method

If you specify the HTTP Cookie Insert method within the Cookie persistence profile, the information about
the server to which the client connects is inserted in the header of the HTTP response from the server as a
cookie. By default, the cookie is named BIGipServer<pool name>, and it includes the encoded address
and port of the server handling the connection. The expiration date for the cookie is set based on the
Expiration setting in the Cookie persistence profile. HTTP Cookie Insert is the default value for the
Cookie Method setting.

Tip: You can assign this type of profile to a Performance (HTTP) type of virtual server.

HTTP Cookie Rewrite method

If you specify HTTP Cookie Rewrite method, the BIG-IP system intercepts a Set-Cookie header, named
BIGipCookie, sent from the server to the client, and overwrites the name and value of the cookie. The
new cookie is named BIGipServer<pool name> and it includes the address and port of the server handling
the connection.

Important: We recommend that you use this method instead of the HTTP Cookie Passive method whenever
possible.

The HTTP Cookie Rewrite method requires you to set up the cookie created by the server. For the HTTP
Cookie Rewrite method to succeed, there needs to be a blank cookie coming from the web server for Local
Traffic Manager to rewrite. With Apache variants, the cookie can be added to every web page header by
adding the following entry to the httpd.conf file: Header add Set-Cookie
BIGipCookie=0000000000000000000000000...

(The cookie must contain a total of 120 zeros.)

Note: For backward compatibility, the blank cookie can contain only 75 zeros. However, cookies of this
size do not allow you to use iRules” and persistence together.

107

Session Persistence Profiles

HTTP Cookie Passive method

Cookie hash

If you specify the HTTP Cookie Passive method, the BIG-IP® system does not insert or search for blank
Set-Cookie headers in the response from the server. This method does not try to set up the cookie. With
this method, the server provides the cookie, formatted with the correct server information and timeout.

Important: We recommend that you use the HITP Cookie Rewrite method instead of the HITP Cookie
Passive method whenever possible.

For the HTTP Cookie Passive method to succeed, there needs to be a cookie coming from the web server
with the appropriate server information in the cookie. Using the BIG-IP Configuration utility, you generate
a template for the cookie string, with encoding automatically added, and then edit the template to create the
actual cookie.

For example, the following string is a generated cookie template with the encoding automatically added,
where [pool name] is the name of the pool that contains the server, 336260299 is the encoded server
address, and 20480 is the encoded port:

Set-Cookie:BIGipServer [poolname]=336268299.20480.0000; expires=Sat, 01-Jan-2002
00:00:00 GMT; path=/

To create your cookie from this template, type the actual pool name and an expiration date and time.
Alternatively, you can perform the encoding using the following equation for address (a.b.c.d): d* (256+3)
+ c*(25672) + b*256 +a

The way to encode the port is to take the two bytes that store the port and reverse them. Thus, port 80
becomes 80 * 256 + 0 = 20480. Port 1433 (instead of 5 * 256 + 153) becomes 153 * 256 + 5
= 39173.

With Apache variants, the cookie can be added to every web page header by adding the following entry to
the httpd.conf file: Header add Set-Cookie: "BIGipServer my pool=184658624.20480.000;
expires=Sat, 19-Aug-2002 19:35:45 GMT; path=/"

Note: the profile settings Mirror Persistence, Match Across Services, Match Across Virtual Servers, and
Match Across Pools do not apply to the HTTP Cookie Passive method. These settings apply to the Cookie
Hash method only.

method

If you specify the Cookie Hash method, the hash method consistently maps a cookie value to a specific
node. When the client returns to the site, Local Traffic Manager uses the cookie information to return the
client to a given node. With this method, the web server must generate the cookie; Local Traffic Manager
does not create the cookie automatically as it does when you use the HTTP Cookie Insert method.

IPv4 IP address encoding

108

For HTTP Cookie Insert and HTTP Cookie Rewrite methods only, the BIG-IP system encodes the server
address and port specified in an HTTP cookie. To encode an IPv4 server address specified within an HTTP
cookie, the BIG-IP system:

1. Converts each octet value to the equivalent 1-byte hexadecimal value.
2. Reverses the order of the hexadecimal bytes and concatenate to make one 4-byte hexadecimal value.

BIG-IP® Local Traffic Manager™: Concepts

3. Converts the resulting 4-byte hexadecimal value to its decimal equivalent.

For example, if the IP address of the destination serveris 10.1.1.100, the BIG-IP system encodes the IP
address as follows:

10.1.1.100 = 0x0A . 0x01 . Ox01 . Ox64
Reverse byte order, concatenated = 0x6401010A
0x6401010A = 1677787402

The address encoding algorithm is performed algebraically, as follows, for address a.b.c.d:

a + b*256 + c*(25672) + d*(256"3)

For example, if the IP address of the destination serveris 10.1.1.100, the encoded address is derived as
follows:

a=10; b=1l; c=1; d=100
10 + 1*256 + 1*(25672) + 100*(25673) = 1677787402

The result is that BIG-IP system combines the encoded values for the server and port and inserts them into
the persistence cookie. For example, using the IP address and port 10.1.1.100:8080, the persistence
value that the BIG-IP LTM system encodes in the cookie is as follows:

1677787402.36895.0000

Note that the field following the port encoding is reserved for future use and always contains four zeros as
placeholders.

Port encoding

For HTTP Cookie Insert and HTTP Cookie Rewrite methods only, the BIG-IP system encodes the server
address and port specified in an HTTP cookie. To encode a port specified within an HTTP cookie, the
BIG-IP system:

1. Converts the decimal port value to the equivalent 2-byte hexadecimal value.
2. Reverses the order of the two hexadecimal bytes.
3. Converts the resulting 2-byte hexadecimal value to its decimal equivalent.

For example, if the port of the destination server is 8080, the BIG-IP system encodes the port as follows:

8080 = 0x1F90
Reverse byte order = 0x901F
0x901F = 36895

109

Session Persistence Profiles

If the port value is less than 256, the first byte in step 1 is 0x00. For example, if the port value is 80, the
BIG-IP system encodes the port as follows:

80 = 0x0050
Reverse byte order = 0x5000
0x5000 = 20480

The result is that BIG-IP system combines the encoded values for the server and port and inserts them into
the persistence cookie. For example, using the IP address and port 10.1.1.100:8080, the persistence
value that the BIG-IP LTM system encodes in the cookie is as follows:

1677787402.36895.0000

Note that the field following the port encoding is reserved for future use and always contains four zeros as
placeholders.

Destination address affinity persistence

You can optimize your server array with destination address affinity persistence. Destination address affinity
persistence, also known as sticky persistence, directs requests for a certain destination IP address to the
same server, regardless of which client made the request.

This type of persistence provides the most benefits when load balancing caching servers. A caching server
intercepts web requests and returns a cached web page if it is available. In order to improve the efficiency
of the cache on these servers, it is necessary to send similar requests to the same server repeatedly. You can
use the destination address affinity persistence type to cache a given web page on one server instead of on
every server in an array. This saves the other servers from having to duplicate the web page in their cache,
wasting memory.

Hash persistence

110

Hash persistence allows you to create a persistence hash based on an existing iRule that uses the persist
iRule command. Using hash persistence is the same as using universal persistence, except that with hash
persistence, the resulting persistence key is a hash of the data, rather than the data itself.

An example of a iRule that implements hash persistence:

rule my persist irule { when HTTP_REQUEST { persist hash [HTTP::header myheader]
bl

Note that if you use hash persistence and Local Traffic Manager cannot find an entry in the persistence
table for a connection, and the system has not yet chosen a pool member due to fallback persistence, then
the system uses the hash value, rather than the specified load balancing method, to select the pool member.

For example, if the persistence table contains no entry for the hash value 2356372769, and the number of
active nodes in the pool remains the same, then a session with that hash value for persistence is always
persisted to node 10.10.10.190 (assuming that the node is active).

BIG-IP® Local Traffic Manager™: Concepts

Microsoft Remote Desktop Protocol persistence

MSRDP persistence provides an efficient way of load balancing traffic and maintaining persistent sessions
between Windows” clients and servers that are running the Microsoft® Remote Desktop Protocol (RDP)
service. The recommended scenario for enabling MSRDP persistence feature is to create a load balancing
pool that consists of members running Windows Server 2003 or Windows Server 2008, where all members
belong to a Windows cluster and participate in a Windows session directory.

Benefits of Microsoft Remote Desktop Protocol persistence

Normally, Windows servers running Microsoft Terminal Services can use a session broker (known as
Terminal Services Session Directory in Windows Server 2003 and TS Session Broker in Windows Server
2008) to ensure that user sessions are assigned to specific servers. If a client initiates a connection request
to the wrong terminal server, that server redirects the client to the appropriate server.

When you have a BIG-IP" system, however, the incorrect server needs to redirect the client to the BIG-IP
system virtual server, rather than to an individual server in the load balancing pool. To ensure that this
happens, you can configure an MSRDP profile. With an MSRDP profile, Local Traffic Manager uses a
token that the session broker provides to maintain persistence records. If a user initiates a session for which
no session broker token exists, Local Traffic Manager makes load balancing decisions according to whichever
load balancing method is configured for the pool.

In summary, using Local Traffic Manager with an MSRDP persistence profile, in conjunction with a session
broker, allows for higher scalability and a greater range and flexibility of load balancing options than when
using a session broker alone.

Microsoft Remote Desktop Protocol persistence server platform issues

By default, Local Traffic Manager with MSRDP persistence enabled load balances connections according
to the way that the user has configured Local Traffic Manager for load balancing, as long as the session
broker is configured on each server in the pool. Terminal Services Session Directory and TS Session Broker
are features that are only available on Windows Server 2003 or Windows Server 2008 respectively. Therefore,
each server in the pool must be a Windows Server 2003 or Windows Server 2008 server, if you want to use
MSRDP persistence in default mode. Also, each client system must be running the remote desktop client
software that is included with any Windows Server 2003 or Windows Server 2008 system.

If, however, you want to enable MSRDP persistence but your server platforms are running older versions
of Windows (on which Session Directory or TS Session Broker is not available), you can enable MSRDP
persistence in non-default mode. This causes Local Traffic Manager to connect a client to the same Windows
server by way of the user name that the client provides. Note that enabling MSRDP persistence in non-default
mode (that is, with no session broker available on the servers) is less preferable than the default mode,
because it provides limited load-balancing and redirection capabilities.

Configuring MSRDP persistence with a session broker

To enable MSRDP persistence in the default mode, you must configure a session broker on each Windows
server in your load balancing pool. In addition to configuring a session broker, you must perform other
Windows configuration tasks on those servers. However, before you configure your Windows servers, you
must configure Local Traffic Manager, by performing tasks such as creating a load-balancing pool and
designating your Windows servers as members of that pool.

111

Session Persistence Profiles

Configuring MSRDP persistence without a session broker

When a server has no session broker, the server cannot share sessions with other servers, and therefore
cannot perform any redirections when a connection to a server becomes disconnected. In lieu of session
sharing, Windows clients provide data, in the form of a user name, to the BIG-IP® system to allow the
BIG-IP system to consistently connect that client to the same server. Enabling MSRDP persistence to behave
in this way is the non-default mode.

SIP persistence

Session Initiation Protocol is an application-layer protocol that manages sessions consisting of multiple
participants, thus enabling real-time messaging, voice, data, and video. A session can be a simple two-way
telephone call or Instant Message dialogue, or a complex, collaborative, multi-media conference call that
includes voice, data, and video. With SIP, applications can communicate with one another by exchanging
messages through the SCTP, TCP or UDP protocols.

SIP persistence is a type of persistence available for server pools. You can configure SIP persistence for
proxy servers that receive SIP messages sent through the UDP profile. Local Traffic Manager currently
supports persistence for SIP messages sent through the UDP, TCP, or SCTP protocols.

Important: For virtual servers processing UDP traffic, always check that the value of the SIP profile
Timeout setting is at least as long (in seconds) as the value of the Idle Timeout setting of the UDP profile.
Doing so ensures that SIP traffic is persisted properly.

Source address affinity persistence

Source address affinity persistence, also known as simple persistence, tracks sessions based only on the
source IP address. When a client requests a connection to a virtual server that supports source address
affinity persistence, Local Traffic Manager checks to see if that client previously connected, and if so,
returns the client to the same pool member.

You might want to use source address affinity persistence and SSL persistence together. In situations where
an SSL session ID times out, or where a returning client does not provide a session ID, you might want
Local Traffic Manager to direct the client to the original pool member based on the client’s IP address. As
long as the client’s source address affinity persistence record has not timed out, Local Traffic Manager can
successfully return the client to the appropriate pool member.

Persistence settings apply to all protocols. When the persistence timer is set to a value greater than 0,
persistence is on. When the persistence timer is set to 0, persistence is off.

The persistence mask feature works only for virtual servers that implement source address affinity persistence.
By adding a persistence mask, you identify a range of source IP addresses to manage together as a single
source address affinity persistent connection when connecting to the pool.

SSL persistence

SSL persistence is a type of persistence that tracks SSL sessions using the SSL session ID, and it is a property
of each individual pool. Using SSL persistence can be particularly important if your clients typically have

112

BIG-IP® Local Traffic Manager™: Concepts

translated IP addresses or dynamic IP addresses, such as those that Internet service providers typically
assign. Even when the client’s IP address changes, Local Traffic Manager " still recognizes the session as
being persistent based on the session ID.

You might want to use SSL persistence and source address affinity persistence together. In situations where
an SSL session ID times out, or where a returning client does not provide a session ID, you might want
Local Traffic Manager to direct the client to the original node based on the client’s IP address. As long as
the client’s simple persistence record has not timed out, Local Traffic Manager can successfully return the
client to the appropriate node.

Universal persistence

Included in the Local Traffic Manager Universal Inspection Engine (UIE) is a set of functions that you
can specify within BIG-IP" system iRules” to direct traffic in more granular ways. Using these iRule
functions, you can write expressions that direct traffic based on content data, or direct traffic to a specific
member of a pool.

Universal persistence takes this iRules feature one step further, by allowing you to use the iRule persist
uie command to implement persistence for sessions based on content data, or based on connections to a
specific member of a pool. Universal persistence does this by defining some sequence of bytes to use as a
session identifier.

To use iRule expressions for persistence, a universal persistence profile includes a setting that specifies the
name of the iRule containing the expression.

rule my persist irule { when HTTP REQUEST { persist uie [HTTP::header myheader]
bl

Unlike hash persistence, which uses a hash of the data as the persistence key, universal persistence uses the
data itself as the persistence key.

Note: F5 Networks" recommends that you configure a OneConnect" profile in addition to the Universal
profile, to ensure that Local Traffic Manager load balances HTTP requests correctly.

113

Protocol Profiles

About protocol profiles

Some of the BIG-IP® Local Traffic Manager profiles that you can configure are known as protocol profiles.
The protocol profiles types are:

 FastL4

* Fast HTTP
- UDP

« SCTP

For each protocol profile type, BIG-IP Local Traffic Manager provides a pre-configured profile with default
settings. In most cases, you can use these default profiles as is. If you want to change these settings, you
can configure protocol profile settings when you create a profile, or after profile creation by modifying the
profile’s settings.

To configure and manage protocol profiles, log in to the BIG-IP Configuration utility, and on the Main tab,
expand Local Traffic, and click Profiles.

The Fast L4 profile type

The purpose of a Fast L4 profile is to help you manage Layer 4 traffic more efficiently. When you assign
a Fast L4 profile to a virtual server, the Packet Velocity” ASIC (PVA) hardware acceleration within the
BIG-IP" system (if supported) can process some or all of the Layer 4 traffic passing through the system.
By offloading Layer 4 processing to the PVA hardware acceleration, the BIG-IP system can increase
performance and throughput for basic routing functions (Layer 4) and application switching (Layer 7).

You can use a Fast L4 profile with these types of virtual servers: Performance (Layer 4), Forwarding (Layer
2), and Forwarding (IP).

PVA hardware acceleration

Once you implement a Fast L4 profile, Local Traffic Manager = automatically selects the most efficient
PVA hardware acceleration mode for Layer 4 traffic, if PCVA is supported on the specific BIG-IP® platform.
Possible modes are Full, Assisted, and None.

The particular hardware acceleration mode that Local Traffic Manager selects depends on these factors:

The Fast L4 profile settings
The mode that the BIG-IP selects is influenced by the way that you configure the settings of the Fast
L4 profile.

The virtual server configuration
The mode that Local Traffic Manager selects is influenced by the specific features that you assigned to
the virtual server (such as pools, SNAT pools, and iRules®).

Protocol Profiles

A monitor assigned to associated nodes
For full PVA acceleration, you must assign monitors to the relevant nodes.

The value of the PVA Acceleration setting
The PVA Acceleration setting in the Fast L4 profile defines the maximum amount of hardware
acceleration that you want to allow, for Layer 4 traffic passing through the virtual server. Therefore, if
you set the value to:

e Full: The system can set hardware acceleration to any of the three modes (Full, Assisted, or
None), depending on the virtual server configuration. This is the default value.

* Assisted: The system can set hardware acceleration to either Assisted or None mode, depending
on the virtual server configuration.

* None: The system does not perform hardware acceleration.

Depending on the current mode to which hardware acceleration is automatically set, Local Traffic Manager
accelerates Layer 4 traffic

Important: If you have a VLAN group configured on the BIG-IP system and its Transparency Mode setting
is set to Translucent or Transparent, Local Traffic Manager automatically sets the PVA Acceleration
value to None.

The Server Sack, Server Timestamp, and Receive Window settings

The table shown describes three of the Fast L4 profile settings -- Server Sack, Server Timestamp, and
Receive Window.

Setting Description

Server Sack Specifies whether the BIG-IP system processes
Selective ACK (Sack) packets in cookie responses
from the server. The default is disabled.

Server Timestamp Specifies whether the BIG-IP system processes
timestamp request packets in cookie responses from
the server. The default is disabled.

Receive Window Specifies the amount of data the BIG-IP system can
accept without acknowledging the server. The default
value is 0 (zero).

The Fast HTTP profile type

116

The Fast HTTP profile is a configuration tool designed to speed up certain types of HTTP connections. This
profile combines selected features from the TCP Express, HTTP, and OneConnect™ profiles into a single
profile that is optimized for the best possible network performance. When you associate this profile with a
virtual server, the virtual server processes traffic packet-by-packet, and at a significantly higher speed.

You might consider using a Fast HTTP profile when:

* You do not need features such as remote server authentication, SSL traffic management, and TCP
optimizations, nor HTTP features such as data compression, pipelining, and RAM Cache.

* You do not need to maintain source IP addresses.
* You want to reduce the number of connections that are opened to the destination servers.

BIG-IP® Local Traffic Manager™: Concepts

» The destination servers support connection persistence, that is, HTTP/1.1, or HTTP/1.0 with Keep-Alive
headers. Note that IIS servers support connection persistence by default.

* You need basic iRule support only (such as limited Layer 4 support and limited HTTP header operations).
For example, you can use the iRule events CLIENT ACCEPTED, SERVER CONNECTED, and
HTTP REQUEST.

A significant benefit of using a Fast HTTP profile is the way in which the profile supports connection
persistence. Using a Fast HTTP profile ensures that for client requests, Local Traffic Manager can transform
or add an HTTP Connection header to keep connections open. Using the profile also ensures that Local
Traffic Manager pools any open server-side connections. This support for connection persistence can greatly
reduce the load on destination servers by removing much of the overhead caused by the opening and closing
of connections.

Note: The Fast HTTP profile is incompatible with all other profile types. Also, you cannot use this profile
type in conjunction with VLAN groups, or with the IPv6 address format.

When writing iRules”, you can specify a number of events and commands that the Fast HTTP profile
supports.

You can use the default fasthttp profile as is, or create a custom Fast HTTP profile.

About TCP profiles

TCP profiles are configuration tools that help you to manage TCP network traffic. Many of the configuration
settings of TCP profiles are standard SYSCTL types of settings, while others are unique to Local Traffic
Managerm.

TCP profiles are important because they are required for implementing certain types of other profiles. For
example, by implementing TCP, HTTP, Rewrite, HTML, and OneConnect profiles, along with a persistence
profile, you can take advantage of various traffic management features, such as:

» Content spooling, to reduce server load

* OneConnect, to pool idle server-side connections

+ Layer 7 session persistence, such as hash or cookie persistence
+ iRules"” for managing HTTP traffic

+ HTTP data compression

* HTTP pipelining

+ URI translation

* HTML content modification

* Rewriting of HTTP redirections

The BIG-IP” system includes several pre-configured TCP profiles that you can use as is. In addition to the
default tcp profile, the system includes TCP profiles that are pre-configured to optimize LAN and WAN
traffic, as well as traffic for mobile users. You can use the pre-configured profiles as is, or you can create
a custom profile based on a pre-configured profile and then adjust the values of the settings in the profiles
to best suit your particular network environment.

To access the full set of TCP profiles, log in to the BIG-IP” BIG-IP Configuration utility and navigate to
Acceleration > Profiles > TCP or Local Traffic > Profiles > Protocol > TCP.

117

Protocol Profiles

About tcp-lan-optimized profile settings

The tcp-lan-optimized profile is a pre-configured profile type that can be associated with a virtual
server. In cases where the BIG-IP virtual server is load balancing LAN-based or interactive traffic, you can
enhance the performance of your local-area TCP traffic by using the tcp-lan-optimized profile.

If the traffic profile is strictly LAN-based, or highly interactive, and a standard virtual server with a TCP
profile is required, you can configure your virtual server to use the t cp-lan-optimized profile to enhance
LAN-based or interactive traffic. For example, applications producing an interactive TCP data flow, such
as SSH and TELNET, normally generate a TCP packet for each keystroke. A TCP profile setting such as
Slow Start can introduce latency when this type of traffic is being processed. By configuring your virtual
server to use the tcp-lan-optimized profile, you can ensure that the BIG-IP system delivers LAN-based or
interactive traffic without delay.

A tcp-lan-optimized profile is similar to a TCP profile, except that the default values of certain settings
vary, in order to optimize the system for LAN-based traffic.

You can use the tcp-lan-optimized profile as is, or you can create another custom profile, specifying
the tcp-lan-optimized profile as the parent profile.

About tcp-wan-optimized profile settings

The tcp-wan-optimized profile is a pre-configured profile type. In cases where the BIG-IP system is
load balancing traffic over a WAN link, you can enhance the performance of your wide-area TCP traffic
by using the tcp-wan-optimized profile.

If the traffic profile is strictly WAN-based, and a standard virtual server with a TCP profile is required, you
can configure your virtual server to use a tcp-wan-optimized profile to enhance WAN-based traffic.
For example, in many cases, the client connects to the BIG-IP virtual server over a WAN link, which is
generally slower than the connection between the BIG-IP system and the pool member servers. By configuring
your virtual server to use the tcp-wan-optimized profile, the BIG-IP system can accept the data more
quickly, allowing resources on the pool member servers to remain available. Also, use of this profile can
increase the amount of data that the BIG-IP system buffers while waiting for a remote client to accept that
data. Finally, you can increase network throughput by reducing the number of short TCP segments that the
BIG-IP" system sends on the network.

A tcp-wan-optimized profile is similar to a TCP profile, except that the default values of certain settings
vary, in order to optimize the system for WAN-based traffic.

You can use the tcp-wan-optimized profile as is, or you can create another custom profile, specifying
the tcp-wan-optimized profile as the parent profile.

About tcp-mobile-optimized profile settings

118

The tcp-mobile-optimized profile is a pre-configured profile type, for which the default values are set
to give better performance to service providers' 3G and 4G customers. Specific options in the pre-configured
profile are set to optimize traffic for most mobile users, and you can tune these settings to fit your network.
For files that are smaller than 1 MB, this profile is generally better than the mptcp-mobile-optimized
profile. For a more conservative profile, you can start with the t cp-mobile-optimized profile, and adjust
from there.

BIG-IP® Local Traffic Manager™: Concepts

Note: Although the pre-configured settings produced the best results in the test lab, network conditions
are extremely variable. For the best results, start with the default settings and then experiment to find out
what works best in your network.

This list provides guidance for relevant settings

+ Set the Proxy Buffer Low to the Proxy Buffer High value minus 64 KB. If the Proxy Buffer High is
set to less than 64K, set this value at 32K.

* The size of the Send Buffer ranges from 64K to 350K, depending on network characteristics. If you
enable the Rate Pace setting, the send buffer can handle over 128K, because rate pacing eliminates
some of the burstiness that would otherwise exist. On a network with higher packet loss, smaller buffer
sizes perform better than larger. The number of loss recoveries indicates whether this setting should be
tuned higher or lower. Higher loss recoveries reduce the goodput.

» Setting the Keep Alive Interval depends on your fast dormancy goals. The default setting of 1800
seconds allows the phone to enter low power mode while keeping the flow alive on intermediary devices.
To prevent the device from entering an idle state, lower this value to under 30 seconds.

+ The Congestion Control setting includes delay-based and hybrid algorithms, which might better address
TCP performance issues better than fully loss-based congestion control algorithms in mobile environments.
The Illinois algorithm is more aggressive, and can perform better in some situations, particularly when
object sizes are small. When objects are greater than 1 MB, goodput might decrease with Illinois. In a
high loss network, Illinois produces lower goodput and higher retransmissions.

* For 4G LTE networks, specify the Packet Loss Ignore Rate as 0. For 3G networks, specify 2500.
When the Packet Loss Ignore Rate is specified as more than 0, the number of retransmitted bytes and
receives SACKs might increase dramatically.

* For the Packet Loss Ignore Burst setting, specify within the range of 6-12, if the Packet Loss Ignore
Rate is set to a value greater than 0. A higher Packet Loss Ignore Burst value increases the chance of
unnecessary retransmissions.

* For the Initial Congestion Window Size setting, round trips can be reduced when you increase the
initial congestion window from 0 to 10 or 16.

+ Enabling the Rate Pace setting can result in improved goodput. It reduces loss recovery across all
congestion algorithms, except Illinois. The aggressive nature of Illinois results in multiple loss recoveries,
even with rate pacing enabled.

A tcp-mobile-optimized profile is similar to a TCP profile, except that the default values of certain
settings vary, in order to optimize the system for mobile traffic.

You can use the tcp-mobile-optimized profile as is, or you can create another custom profile, specifying
the tcp-mobile-optimized profile as the parent profile.

About mptcp-mobile-optimized profile settings

The mptcp-mobile-optimized profile is a pre-configured profile type for use in reverse proxy and
enterprise environments for mobile applications that are front-ended by a BIG-IP" system. This profile
provides a more aggressive starting point than the t cp-mobile-optimized profile. It uses newer congestion
control algorithms and a newer TCP stack, and is generally better for files that are larger than 1 MB. Specific
options in the pre-configured profile are set to optimize traffic for most mobile users in this environment,
and you can tune these settings to accommodate your network.

Note: Although the pre-configured settings produced the best results in the test lab, network conditions
are extremely variable. For the best results, start with the default settings and then experiment to find out
what works best in your network.

The enabled Multipath TCP (MPTCP) option provides more bandwidth and higher network utilization. It
allows multiple client-side flows to connect to a single server-side flow. MPTCP automatically and quickly

119

Protocol Profiles

adjusts to congestion in the network, moving traffic away from congested paths and toward uncongested
paths.

The Congestion Control setting includes delay-based and hybrid algorithms, which may better address
TCP performance issues better than fully loss-based congestion control algorithms in mobile environments.
Refer to the online help descriptions for assistance in selecting the setting that corresponds to your network
conditions.

The enabled Rate Pace option mitigates bursty behavior in mobile networks and other configurations. It
can be useful on high latency or high BDP (bandwidth-delay product) links, where packet drop is likely to
be a result of buffer overflow rather than congestion.

Anmptcp-mobile-optimized profile is similar to a TCP profile, except that the default values of certain
settings vary, in order to optimize the system for mobile traffic.

You can use the mptcp-mobile-optimized profile as is, or you can create another custom profile,
specifying the mptcp-mobile-optimized profile as the parent profile.

The UDP profile type

The UDP profile is a configuration tool for managing UDP network traffic.

Because the BIG-IP” system supports the OpenSSL implementation of datagram Transport Layer Security
(TLS), you can optionally assign both a UDP and a Client SSL profile to certain types of virtual servers.

The SCTP profile type

The Any IP

Local Traffic Manager includes a profile type that you can use to manage Stream Control Transmission
Protocol (SCTP) traffic. Stream Control Transmission Protocol (SCTP) is a general-purpose,
industry-standard transport protocol, designed for message-oriented applications that transport signalling
data. The design of SCTP includes appropriate congestion-avoidance behavior, as well as resistance to
flooding and masquerade attacks.

Unlike TCP, SCTP includes the ability to support several streams within a connection. While a TCP stream
refers to a sequence of bytes, an SCTP stream represents a sequence of messages.

You can use SCTP as the transport protocol for applications that require monitoring and detection of session
loss. For such applications, the SCTP mechanisms to detect session failure actively monitor the connectivity
of a session.

profile type

120

With the Any IP profile, you can enforce an idle timeout value on IP traffic other than TCP and UDP traffic.
You can use the BIG-IP Configuration utility to create, view details for, or delete Any IP profiles.

When you configure an idle timeout value, you specify the number of seconds for which a connection is
idle before the connection is eligible for deletion. The default is 60 seconds. Possible values that you can
configure are:

BIG-IP® Local Traffic Manager™: Concepts

Specify
Specifies the number of seconds that the Any IP connection is to remain idle before it can be deleted.
When you select Specify, you must also type a number in the box.

Immediate
Specifies that you do not want the connection to remain idle, and that it is therefore immediately eligible
for deletion.

Indefinite
Specifies that Any IP connections can remain idle indefinitely.

121

Remote Server Authentication Profiles

Introduction to authentication profiles

A significant feature of BIG-IP® Local Traffic Manager is its ability to support Pluggable Authentication
Module (PAM) technology. PAM technology allows you to choose from a number of different authentication
and authorization schemes to use to authenticate or authorize network traffic.

The goal of PAM technology is to separate an application, such as the BIG-IP system, from its underlying
authentication technology. This means that you can dictate the particular authentication/authorization
technology that you want the BIG-IP system to use to authenticate application traffic coming into the BIG-IP
system.

To this end, Local Traffic Manager offers several authentication schemes, known as authentication modules.
These authentication modules allow you to use a remote system to authenticate or authorize application
requests that pass through the BIG-IP system.

The BIG-IP system normally routes remote authentication traffic through a Traffic Management Microkernel
(TMM) switch interface (that is, an interface associated with a VLAN and a self IP address), rather than
through the management interface. Therefore, if the TMM service is stopped for any reason, remote
authentication is not available until the service is running again.

BIG-IP system authentication modules
Local Traffic Manager authentication modules that you can implement for remote authentication are:

Lightweight Directory Access Protocol (LDAP)
Local Traffic Manager can authenticate or authorize network traffic using data stored on a remote LDAP
server or a Microsoft® Windows® Active Directory” server. Client credentials are based on basic HTTP
authentication (user name and password).

Remote Authentication Dial-In User Service (RADIUS)
Local Traffic Manager can authenticate network traffic using data stored on a remote RADIUS server.
Client credentials are based on basic HTTP authentication (user name and password).

TACACS+
Local Traffic Manager can authenticate network traffic using data stored on a remote TACACS+ server.
Client credentials are based on basic HTTP authentication (user name and password).

SSL client certificate LDAP
Local Traffic Manager can authorize network traffic using data stored on a remote LDAP server. Client
credentials are based on SSL certificates, as well as defined user groups and roles.

Online Certificate Status Protocol (OCSP)
Local Traffic Manager can check on the revocation status of a client certificate using data stored on a
remote OCSP server. Client credentials are based on SSL certificates.

Certificate Revocation List Distribution Point (CRLDP)
Local Traffic Manager can use CRL distribution points to determine revocation status.

Remote Server Authentication Profiles

Kerberos Delegation
Local Traffic Manager can authenticate application traffic when you are using Microsoft Windows
Integrated Authentication.

Important: When you create remote authentication objects and profiles, the BIG-IP® system places them
into your current administrative partition. Note that the default profile always resides in partition Common.

The LDAP authentication module

An LDAP authentication module is a mechanism for authenticating or authorizing client connections passing
through a BIG-IP" system. This module is useful when your authentication or authorization data is stored
on aremote LDAP server or a Microsoft Windows Active Directory server, and you want the client credentials
to be based on basic HTTP authentication (that is, user name and password).

With the LDAP authentication module, Local Traffic Manager ~ can indicate that the authentication was a
success or failure, or that the LDAP server needs a credential of some sort.

Additionally, the system can take some action based on certain information that the server returns in the
LDAP query response. For example, LDAP response information can indicate the user’s group membership,
or it can indicate that the user’s password has expired. To configure Local Traffic Manager to return specific
data in an LDAP response, you can write an iRule, using the commands AUTH: : subscribe,

AUTH: :unsubscribe,and AUTH: : response_data. For more information, see the F5 Networks DevCentral
web site, http://devcentral.f5.com.

The RADIUS authentication module

A RADIUS authentication module is a mechanism for authenticating client connections passing through a
BIG-IP" system. You use this module when your authentication data is stored on a remote RADIUS server.
In this case, client credentials are based on basic HTTP authentication (that is, user name and password).

The TACACS+ authentication module

A TACACS+ authentication module is a mechanism for authenticating client connections passing through
a BIG-IP” system. You use this module when your authentication data is stored on a remote TACACS+
server. In this case, client credentials are based on basic HTTP authentication (that is, user name and
password).

The SSL client certificate LDAP authentication module

124

An SSL client certificate LDAP authentication module is a mechanism for authorizing client connections
passing through a BIG-IP® system. With the SSL client certificate LDAP authentication module, you can
use a remote LDAP server to impose access control on application traffic. The module bases this access
control on SSL certificates, as well as user groups and roles that you specify.

BIG-IP® Local Traffic Manager™: Concepts

With the SSL client certificate LDAP authentication module, Local Traffic Manager can indicate that the
authorization was a success or failure, or that the LDAP server needs a credential of some sort.

Additionally, the system can take some action based on certain information that the server returns in the
LDAP query response. For example, LDAP response information can indicate the user’s group membership,
or it can indicate that the user’s password has expired. To configure Local Traffic Manager to return specific
data in an LDAP response, you can write an iRule, using the commands AUTH: : subscribe,

AUTH: :unsubscribe,and AUTH: : response_data. For more information, see the F5 Networks DevCentral
web site, http://devcentral.f5.com.

Search results and corresponding authorization status

This table shows the results of certificate-based authorization being performed.

Result of search Authorization status

No records match Authorization fails

One record matches Authorization succeeds and is subject to groups and
roles

Two or more records match Authorization fails, due to invalid database entries

SSL client certificate authorization

Before you can implement an SSL client certificate LDAP module, you must understand the two different
types of credentials that the BIG-IP” system uses to authorize application traffic using data on a remote
LDAP server. These two types of credentials are:

* SSL certificates
* Groups and roles

With SSL client certificate LDAP authorization, Local Traffic Manager can authorize clients based on
signed client certificates issued by trusted CAs. Then, to further enhance the ability of the system to authorize
client requests, you can also specify groups and roles. Basing authorization on certificates as well as groups
and roles provides the flexibility you need to control client access to system resources.

SSL certificates for LDAP authorization

During the process of authorizing a client, Local Traffic Manager must search the LDAP database. When
using certificate-based authorization, the system can search the LDAP database in three ways:

User
If certificates are not stored in the LDAP database, you can configure the system to extract a user name
from the certificate presented as part of the incoming client request. The system then checks to see if
an entry for the user exists in the LDAP database. This scenario is a good choice for a company that
acts as its own Certificate Authority, where the company is assured that if the certificate is verified, then
the user is authorized.

Certificate Map
If you create an object and class that map certificates to users in the LDAP database, you can then
configure the system to search for a certificate in the map, and retrieve a user from that map. The system
then checks to ensure that the user in the LDAP database is a valid user.

125

Remote Server Authentication Profiles

Certificate
Many LDAP server environments already incorporate certificates into the user information stored in
the LDAP database. One way of configuring authorization in LDAP server environments is to configure
the system to compare an incoming certificate to the certificate stored in the LDAP database for the user
associated with the client request. If the certificate is found in the user’s LDAP profile, access is granted
to the user, and the request is granted.

Groups and roles for LDAP authorization

In addition to enabling certificate-based authorization, you can also configure authorization based on groups
and roles.

Groups
Because LDAP servers already have the concept and structure of groups built into them, Local Traffic
Manager " can include groups in its authorization feature. To enable the use of groups for authorization
purposes, you must indicate the base and scope under which the system will search for groups in the
LDAP database. Also, you must specify setting values for a group name and a member name. Once you
have completed these tasks, the system can search through the list of valid groups until a group is found
that has the current user as a member.

Roles
Unlike a group, arole is a setting directly associated with a user. Any role-based authorization that Local
Traffic Manager (LTM®) performs depends on the LDAP database having the concept of roles built
into it. To determine if a user should be granted access to a resource, LTM searches through the roles
assigned to the user and attempts to match that role to a valid role defined by the administrator.

The SSL OCSP authentication module

126

An SSL OCSP authentication module is a mechanism for authenticating client connections passing through
a BIG-IP" system. More specifically, an SSL OCSP authentication module checks the revocation status of
an SSL certificate, as part of authenticating that certificate.

Online Certificate Status Protocol (OCSP) is a third-party software application and industry-standard
protocol that offers an alternative to a certificate revocation list (CRL) when using public-key technology.
A CRL is alist of revoked client certificates, which a server system can check during the process of verifying
a client certificate.

You implement an SSL OCSP authentication module when you want to use OCSP instead of a CRL as the
mechanism for checking the revocation status of SSL certificates.

Local Traffic Manager supports both CRLs and the OCSP protocol. If you want to use CRLs instead of
OCSP, you configure an SSL profile.

For more information on OCSP, see RFC 2560 at URL http://www.ietf.org.

Using OCSP to check on the revocation status of client certificates offers distinct advantages over the use
of a CRL.

The limitations of CRLs

When presented with a client certificate, Local Traffic Manager sometimes needs to assess the revocation
state of that certificate before accepting the certificate and forwarding the connection to a target server. The
standard method of assessing revocation status is a CRL, which is stored in a separate CRL file on each

machine in your configuration. Although CRLs are considered to be a standard way of checking revocation

BIG-IP® Local Traffic Manager™: Concepts

status of SSL certificates, a CRL is updated only at fixed intervals, thus presenting a risk that the information
in the CRL is outdated at the time that the status check occurs.

Also, having to store a separate CRL file on each machine presents other limitations:

* All CRL files must be kept in sync.
* Having a separate CRL file on each machine poses a security risk.
+ Multiple CRL files cannot be administered from a central location.

The benefits of OCSP

OCSP ensures that Local Traffic Manager always obtains real-time revocation status during the certificate
verification process.

OCSP is based on a client/server model, where a client system requests revocation status of a certificate,
and a server system sends the response. Thus, when you implement the SSL OCSP authentication module,
the BIG-IP system acts as the OCSP client, and an external system, known as an OCSP responder, acts as
the OCSP server. An OCSP responder is therefore an external server that sends certificate revocation status,
upon request, to the BIG-IP system.

How OCSP works

In general, after receiving an SSL certificate from a client application, the BIG-IP system (acting as an
OCSP client) requests certificate revocation status from an OCSP responder, and then blocks the connection
until it receives status from that responder. If the status from the responder shows that the certificate is
revoked, Local Traffic Manager rejects the certificate and denies the connection. If the status from the
responder shows that the certificate is still valid, Local Traffic Manager continues with its normal certificate
verification process to authenticate the client application.

More specifically, when an application client sends a certificate for authentication, the BIG-IP system
follows this process:

+ First, the BIG-IP system checks that the signer of the certificate is listed in the trusted CAs file.

+ If the certificate is listed, the BIG-IP system then checks to see if the certificate is revoked. Without
OCSP, if the CRL option is configured on the BIG-IP system, the BIG-IP system checks revocation
status by reading the certificate revocation list (CRL). With OCSP, however, the BIG-IP system bypasses
the CRL and prepares to send a revocation status request to the appropriate OCSP responder.

+ Next, the BIG-IP system queries the first responder, even if the responder does not match the certificate
authority that signed the client certificate. However, if the first responder fails with a connection error,
the BIG-IP system queries the next responder.

* Next, the BIG-IP system attempts to match that CA with a CA listed in an SSL OCSP profile.

+ If a match exists, the BIG-IP system checks the target URL within the client certificate’s
AuthorityInfoAccess (AIA) field (if the field exists), and uses that URL to send the request for certificate
revocation status to the OCSP responder.

+ Ifthe Ignore AIA parameter is enabled within the SSL OCSP profile, then the BIG-IP system instead
uses the URL specified in the url parameter of the matching SSL OCSP profile to send the request for
certificate revocation status.

+ If no match exists, the BIG-IP system checks the calist setting of another SSL OCSP profile defined
on the system. If all SSL. OCSP profiles are checked and no match is found, the certificate verification
fails, and the BIG-IP system denies the original client request.

* Once the BIG-IP system has received certificate revocation status from a responder, the BIG-IP system,
when configured to do so, inserts a certificate status header into the original client request. The name
of the certificate status header is SSL.ClientCertificateStatus.

You must then assign the OCSP profile to a virtual server.

A single SSL OCSP profile can target a specific responder, or multiple SSL OCSP profiles can target the
same responder. Each responder itself is associated with a certificate authority (CA), and multiple responders
can be associated with the same CA.

127

Remote Server Authentication Profiles

Note: Local Traffic Manager allows you to enable both the CRL and the OCSP options. Most users need
to enable either one or the other, but not both. However, in the rare case that you want to enable both
options, be aware that both the search of the CRL file, and the connection to the responder must be successful.
Otherwise, Local Traffic Manager cannot obtain status.

Note that an OCSP responder object is an object that you create that includes a URL for an external OCSP
responder. You must create a separate OCSP responder object for each external OCSP responder.

When you subsequently create an OCSP configuration object, the configuration object contains a reference
to any OCSP responder objects that you have created.

The CRLDP authentication module

A CRLDP authentication module is a mechanism for authenticating client connections passing through a
BIG-IP" system. You implement a CRLDP authentication module when you want the BIG-IP system to
use CRL distribution points as the mechanism for checking the revocation status of SSL certificates.

This CRLDP authentication feature is based on a technology known as Certificate Revocation List Distribution
Points (CRLDP). CRLDP is an industry-standard protocol that offers an alternative method for checking a
standard certificate revocation list (CRL) to determine revocation status. CRLDP is also an alternative to
using Online Certificate Status Protocol (OCSP).

A CRLDP authentication module uses CRL distribution points to check the revocation status of an SSL
certificate, as part of authenticating that certificate. CRL distribution points are a mechanism used to distribute
certificate revocation information across a network. More specifically, a distribution point is a Uniform
Resource Identifier (URI) or directory name specified in a certificate that identifies how the server obtains
CRL information. Distribution points can be used in conjunction with CRLs to configure certificate
authorization using any number of LDAP servers.

The Kerberos Delegation authentication module

128

A Kerberos Delegation authentication module is a mechanism for authenticating client connections passing
through a BIG-IP” system. You can use this module when you are using Microsoft Windows Integrated
Authentication to authenticate application traffic.

The Kerberos Delegation module obtains delegated Kerberos credentials for the client principal, and then
retrieves Kerberos credentials for the server-side principal. The Kerberos Delegation module essentially
acts as a proxy for Kerberos credentials. That is, when connecting to a server that is inside its domain, the
browser client fetches Kerberos credentials. These credentials, known as delegated credentials, are passed
to the BIG-IP system, which in turn retrieves credentials for the real server that is on the back end, and
passes those credentials back to the client.

Other Profiles

Introduction to other profiles

In addition to the profiles described in previous chapters, you can configure these BIG-IP® Local Traffic
Manager profiles:

« OneConnect
* NTLM

o Statistics

e Stream

For each profile type, Local Traffic Manager provides a pre-configured profile with default settings. In most
cases, you can use these default profiles as is. If you want to change these settings, you can configure profile
settings when you create a profile, or after profile creation by modifying the profile’s settings.

About OneConnect profiles

The OneConnect profile type implements the BIG-IP® system's OneConnect feature. This feature can
increase network throughput by efficiently managing connections created between the BIG-IP system and
back-end pool members. You can use the OneConnect feature with any TCP-based protocol, such as HTTP
or RTSP.

How does OneConnect work?

The OneConnect feature works with request headers to keep existing server-side connections open and
available for reuse by other clients. When a client makes a new connection to a virtual server configured
with a OneConnect profile, the BIG-IP system parses the request, selects a server using the load-balancing
method defined in the pool, and creates a connection to that server. When the client's initial request is
complete, the BIG-IP system temporarily holds the connection open and makes the idle TCP connection to
the pool member available for reuse.

When another connection is subsequently initiated to the virtual server, if an existing server-side flow to
the pool member is open and idle, the BIG-IP system applies the OneConnect source mask to the IP address
in the request to determine whether the request is eligible to reuse the existing idle connection. If the request
is eligible, the BIG-IP system marks the connection as non-idle and sends a client request over that connection.
If the request is not eligible for reuse, or an idle server-side flow is not found, the BIG-IP system creates a
new server-side TCP connection and sends client requests over the new connection.

Note: The BIG-IP system can pool server-side connections from multiple virtual servers if those virtual
servers reference the same OneConnect profile and the same pool. Also, the re-use of idle connections can
cause the BIG-IP system to appear as though the system is not load balancing traffic evenly across pool
members.

Other Profiles

About client source IP addresses

The standard address translation mechanism on the BIG-IP system translates only the destination IP address
in a request and not the source IP address (that is, the client node’s IP address). However, when the
OneConnect feature is enabled, allowing multiple client nodes to re-use a server-side connection, the source
IP address in the header of each client node’s request is always the IP address of the client node that initially
opened the server-side connection. Although this does not affect traffic flow, you might see evidence of
this when viewing certain types of system output.

The OneConnect profile settings

When configuring a OneConnect profile, you specify this information:

Source mask
The mask applied to the source IP address to determine the connection's eligibility to reuse a server-side
connection.

Maximum size of idle connections
The maximum number of idle server-side connections kept in the connection pool.

Maximum age before deletion from the pool
The maximum number of seconds that a server-side connection is allowed to remain before the connection
is deleted from the connection pool.

Maximum reuse of a connection
The maximum number of requests to be sent over a server-side connection. This number should be
slightly lower than the maximum number of HTTP Keep-2A1ive requests accepted by servers in order
to prevent the server from initiating a connection close action and entering the TIME_WAIT state.

Idle timeout override
The maximum time that idle server-side connections are kept open. Lowering this value may result in
a lower number of idle server-side connections, but may increase request latency and server-side
connection rate.

OneConnect and HTTP profiles

130

Content switching for HTTP requests

When you assign both a OneConnect profile and an HTTP profile to a virtual server, and an HTTP client
sends multiple requests within a single connection, the BIG-IP system can process each HTTP request
individually. The BIG-IP system sends the HTTP requests to different destination servers as determined by
the load balancing method. Without a OneConnect profile enabled for the HTTP virtual server, the BIG-IP
system performs load-balancing only once for each TCP connection.

HTTP version considerations

For HTTP traffic to be eligible to use the OneConnect feature, the web server must support HTTP
Keep-Alive connections. The version of the HTTP protocol you are using determines to what extent this
support is available. The BIG-IP system therefore includes a OneConnect transformations feature within
the HTTP profile, specifically designed for use with HTTP/1.0 which by default does not enable Keep-Alive
connections. With the OneConnect transformations feature, the BIG-IP system can transform HTTP/1.0
connections into HTTP/1.1 requests on the server side, thus allowing those connections to remain open for
reuse.

The two different versions of the HTTP protocol treat Keep-A1live connections in these ways:

BIG-IP® Local Traffic Manager™: Concepts

HTTP/1.1 requests
HTTP Keep-Alive connections are enabled by default in HTTP/1.1. With HTTP/1.1 requests, the
server does not close the connection when the content transfer is complete, unless the client sends a
Connection: close header in the request. Instead, the connection remains active in anticipation of
the client reusing the same connection to send additional requests. For HTTP/1.1 requests, you do not
need to use the OneConnect transformations feature.

HTTP/1.0 requests
HTTP Keep-Alive connections are not enabled by default in HTTP/1.0. With HTTP/1.0 requests, the
client typically sends a Connection: close header to close the TCP connection after sending the
request. Both the server and client-side connections that contain the Connection: close header
are closed once the response is sent. When you assign a OneConnect profile to a virtual server, the
BIG-IP system transforms Connection: close headers in HTTP/1.0 client-side requests to
X-Cnection: close headers on the server side, thereby allowing a client to reuse an existing connection
to send additional requests.

OneConnect and NTLM profiles

NT Lan Manager (NTLM) HTTP 401 responses prevent the BIG-IP” system from detaching the server-side
connection. As a result, a late FIN from a previous client connection might be forwarded to a new client
that re-used the connection, causing the client-side connection to close before the NTLM handshake
completes. If you prefer NTLM authentication support when using the OneConnect feature, you should
configure an NTLM profile in addition to the OneConnect profile.

OneConnect and SNATs

When a client makes a new connection to a virtual server that is configured with a OneConnect profile and
a source network address translation (SNAT) object, the BIG-IP system parses the HTTP request, selects
a server using the load-balancing method defined in the pool, translates the source IP address in the request
to the SNAT IP address, and creates a connection to the server. When the client's initial HTTP request is
complete, the BIG-IP system temporarily holds the connection open and makes the idle TCP connection to
the pool member available for reuse. When a new connection is initiated to the virtual server, the BIG-IP
system performs SNAT address translation on the source IP address and then applies the OneConnect source
mask to the translated SNAT IP address to determine whether it is eligible to reuse an existing idle connection.

About NTLM profiles

NT LAN Manager (NTLM) is an industry-standard technology that uses an encrypted challenge/response
protocol to authenticate a user without sending the user's password over the network. Instead, the system
requesting authentication performs a calculation to prove that the system has access to the secured NTLM
credentials. NTLM credentials are based on data such as the domain name and user name, obtained during
the interactive login process.

The NTLM profile within BIG-IP® Local Traffic Manager optimizes network performance when the
system is processing NT LAN Manager traffic. When both an NTLM profile and a OneConnect " profile
are associated with a virtual server, the local traffic management system can take advantage of server-side
connection pooling for NTLM connections.

131

Other Profiles

How does the NTLM profile work?

When the NTLM profile is associated with a virtual server and the server replies with the HTTP 401
Unauthorized HTTP response message, the NTLM profile inserts a cookie, along with additional profile
options, into the HTTP response. The information is encrypted with a user-supplied passphrase and associated
with the serverside flow. Further client requests are allowed to reuse this flow only if they present the
NTLMConnPool cookie containing the matching information. By using a cookie in the NTLM profile, the
BIG-IP system does not need to act as an NTLM proxy, and returning clients do not need to be
re-authenticated.

The NTLM profile works by parsing the HTTP request containing the NTLM type 3 message and securely
storing the following pieces of information (aside from those which are disabled in the profile):

» User name

* Workstation name

» Target server name

e Domain name

» Cookie previously set (cookie name supplied in the profile)
* Source IP address

With the information safely stored, the BIG-IP system can then use the data as a key when determining
which clientside requests to associate with a particular serverside flow. You can configure this using the
NTLM profile options. For example, if a server's resources can be openly shared by all users in that server's
domain, then you can enable the Key By NTLM Domain setting, and all serverside flows from the users of
the same domain can be pooled for connection reuse without further authentication. Or, if a server's resources
can be openly shared by all users originating from a particular IP address, then you can enable the Key By
Client IP Address setting and all serverside flows from the same source IP address can be pooled for
connection reuse.

The Statistics profile type

132

The Statistics profile provides user-defined statistical counters. Each profile contains 32 settings (Field1
through Field32), which define named counters. Using a Tcl-based iRule command, you can use the names
to manipulate the counters while processing traffic.

For example, you can create a profile named my stats, which assigns the counters tot users, cur_users,
and max_users to the profile settings Field1, Field2, and Field3 respectively. You can then write an iRule
named track users,and then assignthemy stats profile and the track users iRule to a virtual server
named stats-1.

In this example, the counter tot users counts the total number of connections, the counter cur users
counts the current number of connections, and the counter max _users retains the largest value of the counter

cur_ users.

profile stats my stats {
defaults from stats
fieldl tot users
field2 cur users
field3 max users

}

rule track users ({
when CLIENT ACCEPTED {

BIG-IP® Local Traffic Manager™: Concepts

STATS::incr my stats tot users

STATS::setmax my stats max users [STATS::incr my stats cur_ users]
}
}

virtual stats-1 {
destination 10.10.55.66:http
ip protocol tcp
profile http my stats tcp
pool pooll
rule track users

The Stream profile type

You can use the Stream profile to search and replace strings within a data stream, such as a TCP connection.

Note that list types are case-sensitive for pattern strings. For example, the system treats the pattern string
www . £5 . com differently from the pattern string www . F5. com. You can override this case sensitivity by
using the Linux regexp command.

The Request Logging profile type

A Request Logging profile gives you the ability to configure data within a log file for HTTP requests and
responses, according to parameters that you specify.

The DNS Logging profile type

A DNS logging profile gives you the ability to log DNS queries and responses, according to parameters
that you specify.

133

Health and Performance Monitoring

Introduction to health and performance monitoring

BIG-IP® Local Traffic Manager can monitor the health or performance of either pool members or nodes.
Local Traffic Manager supports these methods of monitoring:

Simple monitoring
Simple monitoring merely determines whether the status of a node is up or down. Simple monitors do
not monitor pool members (and therefore, individual protocols, services, or applications on a node), but
only the node itself. The system contains two types of simple monitors, ICMP and TCP_ECHO.

Active monitoring
Active monitoring checks the status of a pool member or node on an ongoing basis, at a set interval. If
a pool member or node being checked does not respond within a specified timeout period, or the status
of a node indicates that performance is degraded, Local Traffic Manager can redirect the traffic to another
pool member or node. There are many types of active monitors. Each type of active monitor checks the
status of a particular protocol, service, or application. For example, one type of monitor is HTTP. An
HTTP type of monitor allows you to monitor the availability of the HTTP service on a pool, pool
member, or node. A WMI type of monitor allows you to monitor the performance of a node that is
running the Windows Management Instrumentation (WMI) software. Active monitors fall into two
categories: Extended Content Verification (ECV) monitors, and Extended Application Verification
(EAV) monitors.

Note: If you configure a performance monitor, such as the SNMP DCA or WMI monitor type, you
should also configure a health monitor. Configuring a health monitor ensures that Local Traffic Manager
reports accurate node availability status.

Passive monitoring
Passive monitoring occurs as part of a client request. This kind of monitoring checks the health of a
pool member based on a specified number of connection attempts or data request attempts that occur
within a specified time period. If, after the specified number of attempts within the defined interval, the
system cannot either connect to the server or receive a response, or if the system receives a bad response,
the system marks the pool member as down. There is only one type of passive monitor, called an Inband
monitor.

Comparison of monitoring methods

In the short description, briefly describe the purpose and intent of the information contained in this topic.
This element is an F5® requirement.

Monitoring Method Benefits Constraints

Simple * Works well when you only * Can check the health of a node
need to determine the up or only, and not a pool member.
down status of a node.

Health and Performance Monitoring

Monitoring Method Benefits Constraints
Active * Can check for specific * Creates additional network
responses traffic beyond the client request
+ Can run with or without client and server response
traffic * Can be slow to mark a pool

member as down

Passive * Creates no additional network * Cannot check for specific
traffic beyond the client request responses
and server response * Can potentially be slow to
* Can mark a pool member as mark a pool member as up

down quickly, as long as there
is some amount of network
traffic

About monitor settings

Every monitor consists of settings with values. The settings and their values differ depending on the type
of monitor. In some cases, Local Traffic Manager assigns default values. This example shows that an
ICMP-type monitor has these settings and default values.

The settings specify that an ICMP type of monitor is configured to check the status of an IP address every
five seconds, and to time out every 16 seconds. The destination IP address that the monitor checks is specified
by the Alias Address setting, with the value * A11 Addresses. Thus, in the example, all IP addresses
with which the monitor is associated are checked.

Name my icmp

Type ICMP

Interval 5

Timeout 16

Transparent No

Alias Address * All Addresses

Overview of monitor implementation

You implement monitors using either the BIG-IP Configuration utility or a command line utility. The task
of implementing a monitor varies depending on whether you are using a pre-configured monitor or creating
a custom monitor. A pre-configured monitor is an existing monitor that Local Traffic ManagerTM provides
for you, with its settings already configured. A custom monitor is a monitor that you create based on one
of the allowed monitor types.

If you want to implement a pre-configured monitor, you need only associate the monitor with a pool, pool
member, or node, and then configure the virtual server to reference the relevant pool. If you want to implement
a custom monitor, you must first create the custom monitor. Then you can associate the custom monitor
with a pool, pool member, or node, and configure the virtual server to reference the pool.

Pre-configured monitors

136

For a subset of monitor types, Local Traffic Manager includes a set of pre-configured monitors. You
cannot modify pre-configured monitor settings, as they are intended to be used as is. The purpose of a

BIG-IP® Local Traffic Manager™: Concepts

pre-configured monitor is to eliminate the need for you to explicitly create a monitor. You use a
pre-configured monitor when the values of the settings meet your needs as is.

The names of the pre-configured monitors that Local Traffic Manager includes are:

* gateway_ icmp
* http

* https

* https 443

e icmp

¢ inband

* real server
* snmp dca

* tcp

* tcp echo

An example of a pre-configured monitor is the i cmp monitor. The example shows the i cmp monitor, with
values configured for its Interval, Timeout, and Alias Address settings. Note that the Interval value is 5,
the Timeout value is 16, the Transparent value is No, and the Alias Address value is * A11 Addresses.

If the Interval, Timeout, Transparent, and Alias Address values meet your needs, you simply assign the
icmp pre-configured monitor directly to a pool, pool member, or node, using the Pools or Nodes screens
within the BIG-IP Configuration utility. In this case, you do not need to use the Monitors screens, unless
you simply want to view the values of the pre-configured monitor settings.

Name icmp

Type ICMP

Interval 5

Timeout 16

Transparent No

Alias Address * All Addresses

Important: All pre-configured monitors reside in partition Common.

Custom monitors

You create a custom monitor when the values defined in a pre-configured monitor do not meet your needs,
or no pre-configured monitor exists for the type of monitor you are creating.

When you create a custom monitor, you use the BIG-IP Configuration utility or a command line utility to:
give the monitor a unique name, specify a monitor type, and, if a monitor of that type already exists, import
settings and their values from the existing monitor. You can then change the values of any imported settings.

You must base each custom monitor on a monitor type. When you create a monitor, the BIG-IP Configuration
utility displays a list of monitor types. To specify a monitor type, simply choose the one that corresponds
to the service you want to check. For example, if you want to want to create a monitor that checks the health
of the HTTP service on a pool, you choose HTTP as the monitor type.

If you want to check more than one service on a pool or pool member (for example HTTP and HTTPS),
you can associate more than one monitor on that pool or pool member.

Checking services is not the only reason for implementing a monitor. If you want to verify only that the
destination IP address is alive, or that the path to it through a transparent node is alive, use one of the simple
monitors, icmp or tcp_echo. Or, if you want to verify TCP only, use the monitor tcp.

137

Health and Performance Monitoring

Importing settings from a pre-configured monitor

If a pre-configured monitor exists that corresponds to the type of custom monitor you are creating, you can
import the settings and values of that pre-configured monitor into the custom monitor. You are then free to
change those setting values to suit your needs. For example, if you create a custom monitor called my icmp,
the monitor can inherit the settings and values of the pre-configured monitor i cmp. This ability to import
existing setting values is useful when you want to retain some setting values for your new monitor but
modify others.

The example shows a custom ICMP-type monitor called my icmp, which is based on the pre-configured
monitor icmp. Note that the Interval value is changed to 10, and the Timeout value is 20. The other settings
retain the values defined in the pre-configured monitor.

Name my icmp

Type ICMP

Interval 10

Timeout 20

Transparent No

Alias Address * All Addresses

Importing settings from a custom monitor

You can import settings from another custom monitor instead of from a pre-configured monitor. This is
useful when you would rather use the setting values defined in another custom monitor, or when no
pre-configured monitor exists for the type of monitor you are creating. For example, if you create a custom
monitor called my_oracle_server2, you can import settings from an existing Oracle-type monitor such as
my oracle serverl. In this case, because Local Traffic Manager does not provide a pre-configured
Oracle-type monitor, a custom monitor is the only kind of monitor from which you can import setting values.

Selecting a monitor is straightforward. Like icmp, each of the monitors has a Type setting based on the
type of service it checks, for example, http, https, ftp, pop3, and takes that type as its name. (Exceptions
are port-specific monitors, like the external monitor, which calls a user-supplied program.)

Monitor destinations

138

By default, the value for the Alias Address setting in the monitors is set to the wildcard * Addresses,
and the Alias Service Port setting is set to the wildcard * Ports. This value causes the monitor instance
created for a pool, pool member, or node to take that node’s address or address and port as its destination.
You can, however, replace either or both wildcard symbols with an explicit destination value, by creating
a custom monitor. An explicit value for the Alias Address and/or Alias Service Port setting is used to force
the instance destination to a specific address and/or port which might not be that of the pool, pool member,
or node.

The ECV monitor types HTTP, HTTPS, and TCP include the settings Send String and Receive String for
the send string and receive expression, respectively.

The most common Send String value is GET /, which retrieves a default HTML page for a web site. To
retrieve a specific page from a web site, you can enter a Send String value that is a fully qualified path
name:

"GET /www/support/customer_ info form.html"

BIG-IP® Local Traffic Manager™: Concepts

The Receive String value is the text string that the monitor looks for in the returned resource. The most
common Receive String values contain a text string that is included in a particular HTML page on your
site. The text string can be regular text, HTML tags, or image names.

The sample Receive String value below searches for a standard HTML tag:

"<HEAD>"

You can also use the default null Receive String value [""]. In this case, any content retrieved is considered
a match. If both the Send String and Receive String fields are left empty, only a simple connection check
is performed.

For HTTP and FTP monitor types, you can use the special values GET or hurl in place of Send String
and Receive String values. For FTP monitors specifically, the GET value should specify the full path
to the file to retrieve.

Transparent and Reverse modes

The normal and default behavior for a monitor is to ping the destination pool, pool member, or node by an
unspecified route, and to mark the node up if the test is successful. However, with certain monitor types,
you can specify a route through which the monitor pings the destination server. You configure this by
specifying the Transparent or Reverse setting within a custom monitor.

Transparent setting

Sometimes it is necessary to ping the aliased destination through a transparent pool, pool member, or node.
When you create a custom monitor and set the Transparent setting to Yes, Local Traffic Manager ~ forces
the monitor to ping through the pool, pool member, or node with which it is associated (usually a firewall)
to the pool, pool member, or node. (That is, if there are two firewalls in a load balancing pool, the destination
pool, pool member, or node is always pinged through the pool, pool member, or node specified; not through
the pool, pool member, or node selected by the load balancing method.) In this way, the transparent pool,
pool member, or node is tested: if there is no response, the transparent pool, pool member, or node is marked
as down.

Common examples are checking a router, or checking a mail or FTP server through a firewall. For example,
you might want to check the router address 10.10.10.53:80 through a transparent firewall
10.10.10.101:80. To do this, you create a monitor called http trans in which you specify
10.10.10.53:80 as the monitor destination address, and set the Transparent setting to Yes. Then you
associate the monitor http_trans with the transparent pool, pool member, or node.

This causes the monitor to check the address 10.10.10 53:80 through 10.10.10.101:80. (In other
words, the BIG-IP® system routes the check of 10.10.10.53:80 through 10.10.10.101:80.) If the
correct response is not received from 10.10.10.53:80,then 10.10.10.101:80 is marked down.

Reverse setting

With the Reverse setting set to Yes, the monitor marks the pool, pool member, or node down when the test
is successful. For example, if the content on your web site home page is dynamic and changes frequently,
you may want to set up a reverse ECV service check that looks for the string "Error". A match for this
string means that the web server was down.

139

Health and Performance Monitoring

Monitors that contain the Transparent or Reverse settings

This table shows the monitors that contain either the Transparent setting or both the Reverse and Transparent
settings.

Monitor Type Settings

TCP Transparent and Reverse
HTTP Transparent and Reverse
HTTPS Transparent and Reverse
TCP Echo Transparent

TCP Half Open Transparent

ICMP Transparent

The Manual Resume feature

By default, when a monitor detects that a resource (that is, a node or a pool member) is unavailable, the
BIG-IP” system marks the resource as down and routes traffic to the next appropriate resource as dictated
by the active load balancing method. When the monitor next determines that the resource is available again,
the BIG-IP system marks the resource as up and immediately considers the resource to be available for
load balancing connection requests. While this process is appropriate for most resources, there are situations
where you want to manually designate a resource as available, rather than allow the BIG-IP system to do
that automatically. You can manually designate a resource as available by configuring the Manual Resume
setting of the monitor.

For example, consider a monitor that you assigned to a resource to track the availability of an HTML file,
index.html, for a web site. During the course of a business day, you decide that you need to restart the
system that hosts the web site. The monitor detects the restart action and informs the BIG-IP system that
the resource is now unavailable. When the system restarts, the monitor detects that the index.html file is
available, and begins sending connection requests to the web site. However, the rest of the web site might
not be ready to receive connection requests. Consequently, the BIG-IP system sends connection requests
to the web site before the site can respond effectively.

To prevent this problem, you can configure the Manual Resume setting of the monitor. When you set the
Manual Resume setting to Yes, you ensure that the BIG-IP system considers the resource to be unavailable
until you manually enable that resource.

Resumption of connections

140

If you have a resource (such as a pool member or node) that a monitor marked as down, and the resource
has subsequently become available again, you must manually re-enable that resource if the monitor’s Manual
Resume setting is set to Yes. Manually re-enabling the resource allows the BIG-IP” system to resume
sending connections to that resource.

The procedure for manually re-enabling a resource varies depending on whether the resource is a pool, a
pool member, or a node.

BIG-IP® Local Traffic Manager™: Concepts

The Time Until Up feature

By default, the BIG-IP® system marks a pool member or node as up immediately upon receipt of the first
correct response to a ping command.

The Time Until Up feature provides a way to adjust the default behavior. This feature allows the system to
delay the marking of a pool member or node as up for some number of seconds after receipt of the first
correct response. The purpose of this feature is to ensure that the monitor marks the pool member or node
as up only after the pool member or node has consistently responded correctly to the BIG-IP system during
the defined time period. With this feature, you ensure that a pool member or node that is available only
momentarily, after sending one correct response, is not marked as up.

A Time Until Up value of 0 causes the default behavior. When the Time Until Up value is a non-0 value,
the BIG-IP system marks a pool member or node as up only when all pool member or node responses during
the Time Until Up period are correct.

Dynamic ratio load balancing

You can configure Dynamic Ratio load balancing for pools that consist of RealNetworks” RealServer
servers, Microsoft” Windows" servers equipped with Windows Management Instrumentation (WMI), or
any server equipped with an SNMP agent such as the UC Davis SNMP agent or Windows" 2000 Server
SNMP agent.

To implement Dynamic Ratio load balancing for these types of servers, BIG-IP® Local Traffic Manager
provides a special monitor plug-in file and a performance monitor for each type of server. The exception

is a server equipped with an SNMP agent. In this case, Local Traffic Manager provides the monitor only;
no special plug-in file is required for a server running an SNMP agent.

You must install the monitor plug-in on each server to be monitored, and you must create a performance
monitor that resides on the BIG-IP system. Once you have created a monitor, the monitor communicates
directly with the server plug-in.

Monitor plug-ins and corresponding monitor templates

For each server type, this table shows the required monitor plug-in and the corresponding performance
monitor types.

Server Type Monitor plug-in Monitor Type
RealServer Windows server F5RealMon.dll Real Server
RealServer UNIX server f5realmon.so Real Server
Windows server with WMI f5isapi.dll or WMI

F5Isapi64.dll or
F5.IsHandler.dll

Windows 2000 Server server SNMP agent SNMP DCA and SNMP DCA
Base

UNIX server UC Davis SNMP agent SNMP DCA and SNMP DCA
Base

141

Health and Performance Monitoring

Monitor association with pools and nodes

You must associate a monitor with the server or servers to be monitored. The server or servers can be either
a pool, a pool member, or a node, depending on the monitor type. You can associate a monitor with a server
in any of these ways:

Monitor-to-pool association
This type of association associates a monitor with an entire load balancing pool. In this case, the monitor
checks all members of the pool. For example, you can create an instance of the monitor ht tp for every
member of the pool my pool, thus ensuring that all members of that pool are checked.

Monitor-to-pool member association
This type of association associates a monitor with an individual pool member, that is, an IP address and
service. In this case, the monitor checks only that pool member and not any other members of the pool.
For example, you can create an instance of the monitor http for pool member 10.10.10.10:80 of
my pool.

Monitor-to-node association
This type of association associates a monitor with a specific node. In this case, the monitor checks only
the node itself, and not any services running on that node. For example, you can create an instance of
the monitor icmp for node 10.10.10.10. In this case, the monitor checks the specific node only, and
not any services running on that node. You can designate a monitor as the default monitor that you want
Local Traffic Manager to associate with one or more nodes. In this case, any node to which you have
not specifically assigned a monitor inherits the default monitor.

Some monitor types are designed for association with nodes only, and not pools or pool members. Other
monitor types are intended for association with pools and pool members only, and not nodes.

Node-only monitors specify a destination address in the format of an IP address with no service port (for
example, 10.10.10.2). Conversely, monitors that you can associate with nodes, pools, and pool members
specify a destination address in the format of an IP address and service port (for example, 10.10.10.2:80).
Therefore, when you use the BIG-IP Configuration utility to associate a monitor with a pool, pool member,
or node, the utility displays only those pre-configured monitors that are designed for association with that
server.

For example, you cannot associate the monitor i cmp with a pool or its members, since the i cmp monitor
is designed to check the status of a node itself and not any service running on that node.

Monitor instances

142

. . . ™ . .
When you associate a monitor with a server, Local Traffic Manager ~automatically creates an instance of
that monitor for that server. A monitor association thus creates an instance of a monitor for each server that
you specify. This means that you can have multiple instances of the same monitor running on your servers.

Because instances of monitors are not partitioned objects, a user can enable or disable an instance of a
monitor without having permission to manage the associated pool or pool member.

For example, a user with the Manager role, who can access partition App2 only, can enable or disable
monitor instances for a pool that resides in partition Common. However, that user cannot perform operations
on the pool or pool members that are associated with the monitor. Although this is correct functionality,
the user might not expect this behavior. You can prevent this unexpected behavior by ensuring that all pools
and pool members associated with monitor instances reside in the same partition.

NATS

Introduction to NATs

In some cases, you might want to allow a client on an external network to send a request directly to a specific
internal node (thus bypassing the normal load balancing server selection). To send a request directly to an
internal server, a client normally needs to know the internal node’s IP address, which is typically a private
class IP address. Because private class IP addresses are non-routable, you can instead create a network
translation address (NAT). A NAT is a feature of BIG-IP® Local Traffic Manager that provides a routable
IP address that an external node can use to send traffic to, or receive traffic from, an internal node.

More specifically, a NAT is an address translation object that instructs Local Traffic Manager to translate
one IP address in a packet header to another IP address. A NAT consists of a one-to-one mapping of a public
IP address to an internal private class IP address.

You can use a NAT in two different ways:

To translate a private class destination address to a public address
When an external node sends traffic to the public IP address defined in a NAT, Local Traffic Manager
automatically translates that destination address to the associated private class IP address, which represents
a specific node on the internal network. This translation is hidden from the external node that sent the
traffic.

To translate a private class source address to a public address
You can also use a NAT to translate an internal node’s private class source IP address to a public IP
address. This translation is hidden from the external node that receives the traffic.

To summarize, a NAT provides a routable address for sending packets to or from a node that has a private
class IP address.

When you create a NAT, you can map only one private class IP address to a specific public IP address. That
is, a NAT always represents a one-to-one mapping between a private class IP address and a public IP address.
If you want to map more than one private class IP address (that is, multiple internal nodes) to a single public
IP address, you can create a SNAT instead.

Note: NAT: do not support port translation, and are not appropriate for protocols that embed IP addresses
in the packet, such as FTP, NT Domain, or CORBA IIOP.

Tip: When you use a NAT to provide access to an internal node, all ports on that internal node are open.
To mitigate this security risk, consider using a SNAT instead.

Local Traffic Manager can apply a NAT to either an inbound or an outbound connection.

NATSs for inbound connections

With respect to NATs, an inbound connection is a connection that is initiated by a node on an external
network, and comes into the BIG-IP® system to a node on the internal network.

NATSs

144

Without a NAT

Normally, traffic coming into the BIG-IP system is load balanced to a server in a pool, based on the load
balancing method configured for that pool, in the following way:

* A client on an external network typically sends traffic to a virtual server on the BIG-IP system. The
destination IP address in this case is the virtual server address.

» Upon receiving a packet, the virtual server typically translates that destination IP address to the IP address
of a pool member, for the purpose of load balancing that packet.

* The pool member then sends its response back through the BIG-IP system, using a route specified in
the server node’s routing table (ideally, a floating IP address assigned to an internal VLAN). On receiving
the response, Local Traffic Manager then performs the reverse translation; that is, the system translates
the pool member’s actual source address to the virtual server address. This results in the source address
in the response to the client being the virtual server address, which is the source address that the client
expects to see.

This typical load balancing scenario ensures that for load balanced traffic, the client system never sees the
internal private class IP address of an internal node.

With a NAT

If the client system wants to bypass the load balancing mechanism to send packets directly to a specific
node on the internal network, the client needs a routable IP address to use to send packets to that server
node.

A NAT solves this problem by providing a routable address that a client can use to make a request to an
internal server directly. In this way, a NAT performs the same type of address translation that a virtual
server performs when load balancing connections to pool members. In the case of a NAT, however, no load
balancing occurs, because the client is sending a request to a specific node. The NAT translates the public
destination IP address in the request to the private class IP address of the internal node.

When the server node sends the response, Local Traffic Manager performs the reverse translation, in the
same way that a virtual server behaves.

Note: Local Traffic Manager does not track NAT connections. Therefore, the public IP address that you
define in a NAT cannot be the same address as a virtual address or SNAT address.

For example, suppose a node on the internal network (such as a load balancing server) has a private class
IP address of 172.16.20.3. You can create a NAT designed to translate a public destination address of
your choice (such as 207.10.1.103) to the private class address 172.16.20. 3. Consequently, whenever
anode on the external network initiates a connection to the address 207.10.1.103, Local Traffic Manager
translates that public destination address to the private class address 172.16.20. 3.

Server Node
Hode himiind

BIG-IP SYSTEM e
E 207.101.10 m.lﬂ.l.m 17216203

NAT Addeets | Origin Address

J07.1001.103 17216203

Figure 6: Sample NAT for an inbound connection

In this example, the NAT provides a routable address for an external node to initiate a connection to an
internal node.

When you create a NAT, you must define two settings: NAT Address and Origin Address. In our example:

BIG-IP® Local Traffic Manager™: Concepts

* The NAT address is 207.10.1.103, and the origin address is 172.16.20. 3.

» The connection is an inbound connection, meaning that the connection is being initiated from the external
network, through the BIG-IP system, to the internal network.

* Local Traffic Manager translates the NAT address to the origin address.
+ The NAT address and the origin address are destination addresses.

NATs for outbound connections

The previous section summarized how a BIG-IP® system normally load balances incoming traffic, and
translates the source IP address in a response back to the virtual address.

Sometimes, however, an internal node needs to initiate a connection, rather than simply respond to a request.
When a node on an internal network initiates a connection, the connection is considered to be an outbound
connection. In this case, because the outgoing packets do not represent a response to a load-balanced request,
the packets do not pass through a virtual server, and therefore the system does not perform the usual source
IP address translation.

Without a NAT, the source IP address is a non-routable address. With a NAT, however, Local Traffic
Manager " translates the internal node’s private class IP address to a public IP address, to which the external
node can then route its response.

For example, suppose an internal node (such as a mail server) has a private class IP address of 172.16.20. 1.
You can create a NAT designed to translate the private class address 172.16.20.1 to a public source
address of your choice (such as 207.10.1.101). Consequently, whenever the internal node 172.16.20.1
initiates a connection destined for a node on the external network, the system translates that source address
0of 172.16.20.1 to its public address (207.10.1.101).

Server Node

17216.20.1
Mode
Source address BIG-IP SYSTEM o s E
7.10.1.101
D " 207101101 ¥ i o— ﬁ

MAT Address | Qrigin Addrass

207101101 17216201

Figure 7: Sample NAT for an outbound connection

In this example, the NAT provides a way for an internal node to initiate a connection to a node on an external
network, without showing a private class IP address as the source address.

A NAT has two settings; NAT Address and Origin Address. In this example:

* The NAT address is 207.10.1.101, and the origin address is 172.16.20.1.

* The connection is an outbound connection, meaning that the connection is being initiated from the
internal network, through Local Traffic Manager, to the external network.

* Local Traffic Manager translates the origin address to the NAT address.

» The origin address and the NAT address are source addresses.

A NAT always represents a one-to-one mapping between a public address and a private class address.
However, if you would like to map multiple internal nodes to a single public address, you can use a secure
network translation address (SNAT) instead of a NAT. You can use SNATs for outbound connections only.

145

SNATS

About source address translation (SNATS)

When the default route on the servers does not route responses back through the BIG-IP system, you can
create a secure network address translation (SNAT). A secure network address translation (SNAT) ensures
that server responses always return through the BIG-IP” system. You can also use a SNAT to hide the
source addresses of server-initiated requests from external devices.

For inbound connections from a client, a SNAT translates the source IP address within packets to a BIG-IP
system IP address that you or the BIG-IP system defines. The destination node then uses that new source
address as its destination address when responding to the request.

For outbound connections, SNATSs ensure that the internal IP address of the server node remains hidden to
an external host when the server initiates a connection to that host.

If you want the system to choose a SNAT translation address for you, you can select the Auto Map feature.
If you prefer to define your own address, you can create a SNAT pool and assign it to the virtual server.

Important: F5 recommends that before implementing a SNAT, you understand network address translation
(NAT).

Comparison of NATs and SNATs

A SNAT is similar to a NAT, except for some key differences listed in this table.

NATs

SNATs

You can map only one original address to a
translation address.

All ports on the internal node are open.

Local Traffic Manager™ does not track NAT
connections.

You must explicitly enable a NAT on the internal
VLAN where the internal node’s traffic arrives on
the BIG-IP" system.

You can map multiple original addresses to a single
translation address. You can even map all node
addresses on your network to a single public IP
address, in a single SNAT object.

By default, SNATs support UDP and TCP only. This
makes a SNAT more secure than a NAT.

Local Traffic Manager tracks SNAT connections,
which, in turn, allows SNATSs and virtual servers to
use the same public IP addresses.

By default, a SNAT that you create is enabled on all
VLAN:E.

SNATs

SNATSs for client-initiated (inbound) connections

In the most common client-server network configuration, the Local Traffic Manager ~ standard address
translation mechanism ensures that server responses return to the client through the BIG-IP” system, thereby
reversing the original destination IP address translation. This typical network configuration is as follows:

* The server nodes are on the same subnet as the BIG-IP system.
» The client nodes are on a different subnet from the server nodes.
* The BIG-IP system is the default gateway for the server subnet.

However, there are atypical network configurations in which the standard BIG-IP system address translation
sequence by itself does not ensure that server responses use the required return path. Examples of these
atypical configurations are:

When clients and servers are on the same network
If you want to load balance requests to server nodes that are on the same network as the client nodes,
you can create a SNAT so that server responses are sent back through the virtual server, rather than
directly from the server node to the client node. Otherwise, problems can occur such as the client rejecting
the response because the source of the response does not match the destination of the request. Known
as virtual server bounceback, this SNAT configuration causes the source of the response to match the
destination of the request, thus ensuring that the client node accepts the response. You can use this kind
of configuration when you want to load balance requests from web servers to application servers on the
same network.

When the default gateway of the server node is not the BIG-IP system

For various reasons, the server node’s default route cannot always be defined to be a route back through
the BIG-IP system. Again, this can cause problems such as the client rejecting the response because the
source of the response does not match the destination of the request. The solution is to create a SNAT.
When Local Traffic Manager then translates the client node’s source IP address in the request to the
SNAT address, this causes the server node to use that SNAT address as its destination address when
sending the response. This, in turn, forces the response to return to the client node through the BIG-IP
system rather than through the server node’s default gateway.

When using the OneConnect feature
Local Traffic Manager OneConnect " feature allows client requests to re-use idle server-side connections.
Without a SNAT, the source IP address in the server-side connection remains the address of the client
node that initially established the connection, regardless of which other client nodes re-use the connection.
Although this is not an issue for traffic routing, you might find it confusing when examining various
types of system output. A SNAT solves this problem.

Note: Using a SNAT for inbound connections can impact the availability of ephemeral ports. This can lead
to the SNAT being unable to process additional connections until some source ports become available.

This image shows a typical problem for client-initiated connections when Local Traffic Manager is not
defined as the server’s default gateway, and you have not configured a SNAT for inbound traffic.

148

BIG-IP® Local Traffic Manager™: Concepts

1 Chert sonds requast to
BIGIP sysiem Cliont BIG-IP System Server
Destination addrens = 192.168.30.5 102.168.10.20 10.10.10.3
192.168.10.20

)) Deatination addrens
192,968.10.20
2 BIG-IP system ’ -
sends reques! lo server
Daskinaion acdness = %

19.10,10.3
Sowircs acdness =
192.168.30.5 5

4 3

Sourcn Sddiess
10.19.10.3

3 SR DEOCR RS
reguesl. Sends responie

(b .'|:-| sing BIG- |P

wysbam)
Daslinabon sddrems =

102.104.30.5

Source address = Default gateway
110103

d Defaul galeway sends
responss to disnt

§ Client rejects response.

Figure 8: Client rejects response due to non-matching destination and source IP addresses

To prevent these problems, you can configure an inbound SNAT. An inbound SNAT translates the original
client source IP address in a request to a BIG-IP system virtual server or BIG-IP system self I[P address,
forcing subsequent server response to return directly to Local Traffic Manager. When an inbound SNAT
is configured on the system, Local Traffic Manager translates not only the destination IP address in the
request (using the standard address translation mechanism), but also the source IP address in the request
(using a SNAT).

The figure below shows that by configuring a SNAT, you ensure that the response returns through the
BIG-IP system instead of through the default gateway, thus ensuring that the client can accept the server
response.

1 Cheni sands reques o

BIG-IP sysiam.
Dieslination address =) BIG-IP System Sarver
182.168.10.20. Client 182.168.10.20 ot

192.168.30.5 1 address
1020
4

1
Dhestination 2
2 BIG-IP sysiem taz.16e. » —
sands request o server
Transiates source — —
address 192.166.30.5 to Q; 5 3

SNAT address Source address

T892 7681020 192.168.10.20

3 Sarver processes

request and sends.
rasponsa back io SNAT
address 192.168.10.20

Source address =
10.10.10.3 Default Gateway

4 BIG-IP sysfem
transiates sowrce
address 10.10.10.3 back
fo 192 168.10.20.

Sends respanse o client.

L] Client accepts
FRSpONSE

Figure 9: Client accepts response due to matching destination and source IP addresses

SNATSs for server-initiated (outbound) connections

When an internal server initiates a connection to an external host, a SNAT can translate the private, source
IP addresses of one or more servers within the outgoing connection to a single, publicly-routable address.
The external destination host can then use this public address as a destination address when sending the
response. In this way, the private class IP addresses of the internal nodes remain hidden from the external
host.

149

SNATs

More specifically, a SNAT for an outgoing connection works in the following way:

1. Local Traffic Manager receives a packet from an original IP address (that is, an internal server with a
private IP address) and checks to see if that source address is defined in a SNAT.

2. If the original IP address is defined in a SNAT, Local Traffic Manager changes that source IP address
to the translation address defined in the SNAT.

3. Local Traffic Manager then sends the packet, with the SNAT translation address as the source address,
to the destination host.

In this example of an outgoing SNAT, Local Traffic Manager causes three internal nodes, with the IP
addresses 172.16.20.4,172.16.20.5,and 172.16.20. 6, to advertise the public IP address

207.10.1.102 as the source IP address in the three outgoing connections.

Server Node
17216204

Server Node
172162

:- Server Node
17216208

Figure 10: Sample SNAT for multiple outgoing connections

SNAT implementation

150

When you create a SNAT, you map an original [P address to a translation address in one of several ways,
depending on your needs:

You can explicitly map one or more original IP addresses to a single translation address.
See figure

You can use the SNAT automap feature.
The SNAT automap feature automatically selects one of the system’s self IP addresses (typically a
floating self IP address of the egress VLAN), and maps it to the original IP address or addresses that
you specify during SNAT creation. Note that if no floating self IP address is currently assigned to the
egress VLAN, the system uses the floating IP address of a non-egress VLAN.

You can create a pool of translation addresses and map one or more original IP addresses
to that SNAT pool.
This pool of addresses is known as a SNAT pool. You can map an original IP address to the SNAT pool
by either creating a SNAT object or writing an iRule

You can create a SNAT pool and map all original IP addresses to that SNAT pool.
Yet another way to create a SNAT is to create a SNAT pool (using the New SNAT Pool screen of the
BIG-IP Configuration utility) and directly assign it to a virtual server as a resource of that virtual server.
Once you have assigned a SNAT pool to a virtual server, Local Traffic Manager automatically maps
all original IP addresses coming through the virtual server to that SNAT pool.

BIG-IP® Local Traffic Manager™: Concepts

SNAT types

The types of SNATSs you can create are:

Standard SNAT
A standard SNAT is an object you create, using the BIG-IP Configuration utility, that specifies the
mapping of one or more original IP addresses to a translation address. For this type of SNAT, the criteria
that Local Traffic Manager " uses to decide when to apply the translation address is based strictly on
the original IP address. That is, if a packet arrives from the original IP address that you specified in the
SNAT, then Local Traffic Manager translates that address to the specified translation address. There
are three types of standard SNATSs that you can create:

* A SNAT in which you specify a specific translation address
* A SNAT that uses the automap feature
* A SNAT in which you specify a SNAT pool as your translation address

Intelligent SNAT
Like a standard SNAT, an intelligent SNAT is the mapping of one or more original IP addresses to a
translation address. However, you implement this type of SNAT mapping within an iRule instead of by
creating a SNAT object. For this type of SNAT, the criteria that Local Traffic Manager uses to decide
when to apply a translation address is based on any piece of data you specify within the iRule, such as
an HTTP cookie or a server port.

SNAT pool assigned as a virtual server resource
This type of SNAT consists of just a SNAT pool that you directly assign as a resource to a virtual server.
When you implement this type of SNAT, you create a SNAT pool only; you do not need to create a
SNAT object or an iRule.

About translation addresses

You can specify the translation addresses that you want to map to your original IP addresses. A translation
address can be in these three forms:

An IP Address

When creating a SNAT, you can specify a particular IP address that you want the SNAT to use as a
translation address.

A SNAT pool
Specifying this value allows you to specify an existing SNAT pool to which you want to map your
original IP address.

SNAT automap
Similar to a SNAT pool, the SNAT automap feature allows you to map one or more original IP addresses
to a pool of translation addresses. With the SNAT automap feature, you do not need to create the pool.
Instead, Local Traffic Manager™ effectively creates a pool for you, using self IP addresses as the
translation addresses for the pool.

151

SNATs

Original IP addresses

You can specify the original IP addresses that you want to map to translation addresses. You can specify
one IP address or multiple IP addresses.

VLAN traffic

You can specify one or more VLANs to which you want the SNAT to apply.

152

Traffic Classes

About traffic classes

BIG-IP" Local Traffic Manager includes a feature known as traffic classes. A traffic class is a feature that
you can use when implementing optimization profiles for modules such as the Application Acceleration
Managerm.

A traffic class allows you to classify traffic according to a set of criteria that you define, such as source and
destination IP addresses. In creating the traffic class, you define not only classification criteria, but also a
classification ID. Once you have defined the traffic class and assigned the class to a virtual server, Local
Traffic Manager associates the classification ID to each traffic flow. In this way, Local Traffic Manager
can regulate the flow of traffic based on that classification.

When attempting to match traffic flows to a traffic class, Local Traffic Manager uses the most specific
match possible.

To configure and manage traffic classes, log in to the BIG-IP Configuration utility, and on the Main tab,
expand Local Traffic, and click Traffic Classes.

IRules

Introduction to iRules

An iRule is a powerful and flexible feature within BIG-IP® Local Traffic Manager that you can use to
manage your network traffic. Using syntax based on the industry-standard Tools Command Language (Tcl),
the iRules” feature not only allows you to select pools based on header data, but also allows you to direct
traffic by searching on any type of content data that you define. Thus, the iRules feature significantly
enhances your ability to customize your content switching to suit your exact needs.

Important: For complete and detailed information on iRules syntax, see the F'5 Networks DevCentral web
site, http://devcentral.f5.com Note that iRules must conform to standard Tcl grammar rules;
therefore, for more information on Tcl syntax, see
http://tmml.sourceforge.net/doc/tcl/index.html.

An iRule is a script that you write if you want individual connections to target a pool other than the default
pool defined for a virtual server. iRules allow you to more directly specify the destinations to which you
want traffic to be directed. Using iRules, you can send traffic not only to pools, but also to individual pool
members, ports, or URIs. The iRules you create can be simple or sophisticated, depending on your
content-switching needs.

when CLIENT ACCEPTED ({

if { [IP::addr [IP::client addr] equals 10.10.10.10] } {
pool my pool

}

}

This iRule is triggered when a client-side connection has been accepted, causing Local Traffic Manager to
send the packet to the pool my pool, if the client’s address matches 10.10.10.10.

Using a feature called the Universal Inspection Engine, you can write an iRule that searches either a header
of a packet, or actual packet content, and then directs the packet based on the result of that search. iRules
can also direct packets based on the result of a client authentication attempt.

iRules can direct traffic not only to specific pools, but also to individual pool members, including port
numbers and URI paths, either to implement persistence or to meet specific load balancing requirements.

The syntax that you use to write iRules is based on the Tool Command Language (Tcl) programming
standard. Thus, you can use many of the standard Tcl commands, plus a robust set of extensions that Local
Traffic Manager provides to help you further increase load balancing efficiency.

Important: When referencing an object within an iRule, you must include the full path name of the object.

Basic iRule elements

iRules” are made up of these basic elements:

< Event declarations

iRules

* Operators
* iRule commands

Event declarations

Operators

iRules” are event-driven, which means that Local Traffic Manager triggers an iRule based on an event
that you specify in the iRule. An event declaration is the specification of an event within an iRule that
causes Local Traffic Manager to trigger that iRule whenever that event occurs. Examples of event declarations
that can trigger an iRule are HTTP_REQUEST, which triggers an iRule whenever the system receives an
HTTP request, and CLIENT ACCCEPTED, which triggers an iRule when a client has established a connection.

when HTTP REQUEST {

if { [HTTP::uri] contains "aol" } {
pool aol pool

} else {
pool all pool

An iRule operator compares two operands in an expression.

For example, you can use the contains operator to compare a variable operand to a constant. You do this
by creating an if statement that represents the following: "If the HTTP URI contains aol, send to pool
aol_pool."

iRule commands

156

An iRule command within an iRule causes Local Traffic Manager to take some action, such as querying
for data, manipulating data, or specifying a traffic destination. The types of commands that you can include
within iRules” are:

Statement commands
These commands cause actions such as selecting a traffic destination or assigning a SNAT translation
address. An example of a statement command is pool <name>, which directs traffic to the named load
balancing pool.

Commands that query or manipulate data
Some commands search for header and content data, while others perform data manipulation such as
inserting headers into HTTP requests. An example of a query command is IP: : remote addr, which
searches for and returns the remote IP address of a connection. An example of a data manipulation
command iS HTTP: :header remove <name>, which removes the last occurrence of the named header
from a request or response.

Utility commands
These commands are functions that are useful for parsing and manipulating content. An example of a
utility command is decode_uri <string>, which decodes the named string using HTTP URI encoding
and returns the result.

BIG-IP® Local Traffic Manager™: Concepts

The pool command

Once you have specified a query within your iRule, you can use the pool command to select a load balancing
pool to which you want Local Traffic Manager to send a request. Here is an example of this command.

when HTTP REQUEST ({

set uri [HTTP::uri]

if { Suri ends with ".gif" } {
pool my pool

} elseif { Suri ends with ".jpg" } {
pool your pool

The node command

As an alternative to the pool command, you can also write an iRule that directs traffic to a specific server.
To do this, you use the node command.

when HTTP REQUEST {
if { [HTTP::uri] ends with ".gif" } {
node 10.1.2.200 80

Commands that select a pool of cache servers

You can create an iRule that selects a server from a pool of cache servers. Here is an example of an iRule
that selects a server from a pool of cache servers.

when HTTP_REQUEST
This line specifies the expressions that determine whether the BIG-IP

system sends requests to the cache pool:
if { [HTTP::uri] ends with "html" or [HTTP::uri] ends with "gif" } {
pool cache pool
set key [crc32 [concat [domain [HTTP::host] 2] [HTTP::uri]]]
set cache mbr [persist lookup hash $key node]

if { Scache mbr ne "" } {
This line verifies that the request is not coming from the cache:

if { [IP::addr [IP::remote addr] equals Scache mbr] }
This line sends the request from the cache to the origin pool:
pool origin pool
return

157

iRules

These lines ensure that the persistence record is added for this
host/URI:
persist hash Skey
} else {
pool origin pool
}
}

Note: Local Traffic Manager” redirects URIs to a new cache member at the time that the BIG-IP" system
receives a request for the URI, rather than when the pool member becomes unavailable.

The HTTP::redirect command

In addition to configuring an iRule to select a specific pool, you can also configure an iRule to redirect an
HTTP request to a specific location, using the HTTP: : redirect iRule command. The location can be
either a host name or a URI.

This is an iRule that is configured to redirect an HTTP response.

when HTTP RESPONSE {
if { [HTTP::status] contains "404"} {
HTTP::redirect "http://www.siterequest.com/"

Here is an example of an iRule that redirects an HTTP request.

when HTTP REQUEST ({
if { [HTTP::uri] contains "secure"} {
HTTP::redirect "https://[HTTP::host] [HTTP::uri]"

The snat and snatpool commands

The iRules” feature includes the two statement commands snat and snatpool. Using the snat command,
you can assign a specified translation address to an original IP address from within the iRule, instead of
using the SNAT screens within the BIG-IP Configuration utility.

Using the snatpool command also assigns a translation address to an original IP address, although unlike
the snat command, the snatpool command causes Local Traffic Manager to select the translation address
from a specified SNAT pool that you previously created.

158

BIG-IP® Local Traffic Manager™: Concepts

IRules and administrative partitions

You should be aware of certain iRule configuration concepts as they relate to administrative partitions:

* AniRule can reference any object, regardless of the partition in which the referenced object resides. For
example, an iRule that resides in partition a can contain a pool statement that specifies a pool residing
inpartition b.

* You can remove iRule assignments only from virtual servers that reside in the current Write partition
or in partition Common.

* Note that you can associate an iRule only with virtual servers that reside in the current Write partition
or in partition Common.

* You can associate an existing iRule with multiple virtual servers. In this case, the iRule becomes the
only iRule that is associated with each virtual server in the current Wr i te partition. Because this command
overwrites all previous iRule assignments, F5 does not recommend use of this command.

iRule evaluation

Event types

iRule context

In a basic system configuration where no iRule exists, Local Traffic Manager directs incoming traffic to
the default pool assigned to the virtual server that receives that traffic. However, you might want Local
Traffic Manager to direct certain kinds of connections to other destinations. The way to do this is to write
an iRule that directs traffic to that other destination, contingent on a certain type of event occurring. Otherwise,
traffic continues to go to the default pool assigned to the virtual server.

iRules” are therefore evaluated whenever an event occurs that you have specified in the iRule. For example,
if an iRule includes the event declaration CLIENT ACCEPTED, then the iRule is triggered whenever Local
Traffic Manager accepts a client connection. Local Traffic Manager then follows the directions in the
remainder of the iRule to determine the destination of the packet.

The iRule command syntax includes several types of event declarations that you can specify within an iRule.
For example:

* Global events, such as CLIENT ACCEPTED

« HTTP events, such as HTTP_REQUEST

* SSL events, such as CLIENTSSL HANDSHAKE
+ Authentication events, such as AUTH_SUCCESS

For a complete list of iRule events and their descriptions, see the F5 Networks DevCentral web site,
http://devcentral.f5.com.

For every event that you specify within an iRule, you can also specify a context, denoted by the keywords
clientside or serverside. Because each event has a default context associated with it, you need only
declare a context if you want to change the context from the default.

159

iRules

The example shows my iRulel, which includes the event declaration CLIENT ACCEPTED, as well as the
iRule command IP: :remote addr. In this case, the IP address that the iRule command returns is that of
the client, because the default context of the event declaration CLIENT ACCEPTEDis clientside.

when CLIENT ACCEPTED {
if { [IP::addr [IP::remote addr] equals 10.1.1.80] } {
pool my pooll

Similarly, if you include the event declaration SERVER CONNECTED in an iRule as well as the iRule command
IP::remote addr, the IP address that the iRule command returns is that of the server, because the default
context of the event declaration SERVER CONNECTED is serverside.

The preceding example shows what happens when you write an iRule that uses the default context when
processing iRule commands. You can, however, explicitly specify the clientside and serverside
keywords to alter the behavior of iRule commands.

Continuing with the previous example, the following example shows the event declaration
SERVER_CONNECTED and explicitly specifies the clientside keyword for the iRule command
IP::remote_addr. In this case, the IP address that the iRule command returns is that of the client, despite
the server-side default context of the event declaration.

when SERVER CONNECTED {
if { [IP::addr [IP::addr [clientside {IP::remote addr}] equals 10.1.1.80]
}oA
discard
}
}

Note: You make an event declaration in an iRule by using the when keyword, followed by the event name.
The figure shows an example of an event declaration in an iRule.

IRules assignment to a virtual server

When you assign multiple iRules” as resources for a virtual server, it is important to consider the order in
which you list them on the virtual server. This is because Local Traffic Manager processes duplicate iRule
events in the order that the applicable iRules are listed. An iRule event can therefore terminate the triggering
of events, thus preventing Local Traffic Manager from triggering subsequent events.

Note: If an iRule references a profile, Local Traffic Manager processes this type of iRule last, regardless
of its order in the list of iRules assigned to a virtual server.

IRule command types

160

There are three types of iRule commands:

+ Statement commands
* Query and manipulation commands
+ Utility commands (also known as functions)

BIG-IP® Local Traffic Manager™: Concepts

Statement commands

Some of the commands available for use within iRules are known as statement commands. Statement
commands enable Local Traffic Manager to perform a variety of different actions. For example, some of
these commands specify the pools or servers to which you want Local Traffic Manager to direct traffic.
Other commands specify translation addresses for implementing SNAT connections. Still others specify
objects such as data groups or a persistence profiles.

For a complete list of statement commands, see the F5 Networks DevCentral web site,
http://devcentral.f5.com.

Query and manipulation commands

Using iRules” commands, you can query for specific data contained in the header or content of a request
or response, or you can manipulate that data. Data manipulation refers to inserting, replacing, and removing
data, as well as setting certain values found in headers and cookies.

For example, using the IP::idle timeout command within in iRule, you can query for the current idle
timeout value that is set in a packet header and then load balance the packet accordingly. You can also use
the IP: :idle timeout command to set the idle timeout to a specific value of your choice.

iRule query and manipulation commands are grouped into categories called namespaces. Except for
commands in the global namespace, each iRule query or manipulation command includes the namespace
in its command name. For example, one of the commands in the IP namespace is IP: :idle timeout.
One of the commands in the HTTP namespace is HTTP: :header.

For a complete list of namespaces for iRules commands, see the F5 Networks DevCentral web site,
http://devcentral.f5.com.

Utility commands

Local Traffic Manager includes a number of utility commands that you can use within iRules. You can use
these commands to parse and retrieve content, encode data into ASCII format, verify data integrity, and
retrieve information about active pools and pool members.

IRules and profiles

When you are writing an iRule, you might want that iRule to recognize the value of a particular profile
setting so that it can make a more-informed traffic management decision. Fortunately, the iRules"” feature
includes a command that is specifically designed to read the value of profile settings that you specify within
the iRule.

Not only can iRules read the values of profile settings, but they can also override values for certain settings.
This means that you can apply configuration values to individual connections that differ from the values
Local Traffic Manager applies to most connections passing through a virtual server.

The profile command

The iRules” feature includes a command called PROFILE. When you specify the PROFILE command in an
iRule and name a profile type and setting, the iRule reads the value of that particular profile setting. To do
this, the iRule finds the named profile type that is assigned to the virtual server and reads the value of the
setting that you specified in the PROFILE command sequence. The iRule can then use this information to
manage traffic.

161

iRules

For example, you can specify the command PROFILE: : tcp idle timeout within your iRule. Local
Traffic Manager then finds the TCP profile that is assigned to the virtual server (for example, my tcp)
and queries for the value that you assigned to the Idle Timeout setting.

Commands that override profile settings

Some of the iRule commands for querying and manipulating header and content data have equivalent settings
within various profiles. When you use those commands in an iRule, and an event triggers that iRule, Local
Traffic Manager overrides the values of those profile settings, using the value specified within the iRule
instead.

For example, an HTTP profile might specify a certain buffer size to use for compressing HTTP data, but
you might want to specify a different buffer size for a particular type of HTTP connection. In this case, you
can include the command HTTP: : compress_buffer size in your iRule, specifying a different value
than the value in the profile.

Data groups

Data groups are useful when writing iRules”. A data group is simply a group of related elements, such as
a set of [P addresses for AOL clients. When you specify a data group along with the class match command
or the contains operator, you eliminate the need to list multiple values as arguments in an iRule expression.

You can define three types of data groups: address, integer, and string.
The BIG-IP” system includes three pre-configured data groups: private net, images, and aol.

To understand the usefulness of data groups, it is helpful to first understand the class match command
and the contains operator.

Note: You can manage only those data groups that you have permission to manage, based on your user
role and partition access assignment.

Warning: Do not attempt to modify or delete any of the three pre-configured data groups (private net,
images, and aol). Doing so can produce adverse results.

About the class match command

The BIG-IP® system includes an iRule command called c1ass, with a match option, which you can use
to select a pool based on whether the command being used in the iRule represents a member of a specific
data group. When you use the class command, the BIG-IP system knows that the string following the
identifier is the name of a data group.

For example, using the c1ass command, you can cause the BIG-IP system to load balance all incoming
AOL connections to the pool aol pool, if the value of the IP: : remote addr command is a member of
the data group AOL. In this case, the class match command simply indicates that the object named ao1l is
a collection of values (that is, a data group).

when CLIENT ACCEPTED {
if { [class match [IP::remote addr] equals aol] } {
pool aol pool

162

BIG-IP® Local Traffic Manager™: Concepts

} else {
pool all pool

Storage options

iFiles

With Local Traffic Manager , you can store data groups in two ways, either in-line or externally.

In-line storage

When you create data groups, Local Traffic Manager automatically saves them in their entirety in the
bigip.conf file. This type of storage is known as in-line storage.

In general, in-line storage uses additional system resources due to extensive searching requirements on large
data groups. For this reason, Local Traffic Manager offers you the ability to store your data groups externally,
that is, outside of the bigip.conf file file.

External storage

You have the option to store data groups in another location on the BIG-IP” system, that is, outside of the
bigip.conf file. Such data groups are called external data groups. Because the data group is stored
externally in another location, the bigip.conf file itself contains only the filename and meta-data for
the data group. The data in an externally-stored data group file is stored as a comma-separated list of values
(CSV format).

Important: If you attempt to load a bigip.conft file that contains external data group meta-data, and
the file was created prior to BIG-IP system version 9.4, the system generates an error. The meta-data for
the external data group contains the keyword extern, which generates an error during the load process.
On BIG-IP systems running version 9.4 or later, the extern keyword is no longer needed in the bigip.conf

file.

To create an external data group, you first import a file from another location, using the System options of
the BIG-IP Configuration utility. You then use the Local Traffic iRules” screens to create an external data
group that is based on the imported file.

External data groups can scale to greater than 10,000,000 entries, depending on platform hardware and
available memory (8 GB, or more, memory is recommended). Data groups with larger data items can be
supported with fewer entries. Additionally, updates to external data groups are completely atomic: for
example, the system updates a data group only after the new data successfully completes loading. You can
use the command [class exists xyz] to check whether a data group has finished loading.

Using the BIG-IP Configuration utility, you can create a special file called an iFile. An iFile is a file that
is based on an external file that you previously imported to the BIG-IP® system from another system. You
can reference an iFile from within an iRule, based on a specific iRule event.

To create an iFile and use it within an iRule, you start from the Local Traffic option on the Main tab.

Important: Prior to creating an iFile, you must import a file to the BIG-IP system from another system.

163

iRules

iFile commands

164

With these iRule commands, you can reference the new iFile from within an iRule:

[ifile get IFILENAME]

[ifile 1listall]

[ifile attributes IFILENAME]
[ifile size IFILENAME]

[ifile last updated by IFILENAME]

[ifile last update time IFILENAME]

[ifile revision IFILENAME]
[ifile checksum IFILENAME]

array set [file attributes IFILENAME]

ltm rule ifile rule {
when HTTP_RESPONSE {

return a list of iFiles in all partitions
set listifiles [ifile listall]
log localO. "list of ifiles: $listifiles"

return the attributes of an iFile specified

array set array attributes [ifile attributes

foreach {array attr} [array get array attributes]

log local0. "$array : Sattr"

}

serve an iFile when http status is 404.
set file [ifile get "Common/ifileURL"]
log locall. "file: $ifile"

if { [HTTP::status] equals "404" } {

HTTP:Respond 200 ifile

"/Common/ifileURL"

"/Common/ifileURL"]

{

Dynamic Ratio Load Balancing

Introduction to dynamic ratio load balancing

You can configure Dynamic Ratio load balancing for pools that consist of RealNetworks” RealServer
servers, Microsoft” Windows" servers equipped with Windows Management Instrumentation (WMI), or
any server equipped with an SNMP agent such as the UC Davis SNMP agent or Windows® 2000 Server
SNMP agent.

To implement Dynamic Ratio load balancing for these types of servers, BIG-IP® Local Traffic Manager™
provides a special monitor plug-in file and a performance monitor for each type of server. The exception
is a server equipped with an SNMP agent. In this case, the BIG-IP system provides the monitor only; no
special plug-in file is required for a server running an SNMP agent.

Monitor plug-ins and corresponding monitor templates

Shows the required monitor plug-in and the corresponding performance monitor types.

Server Type Monitor plug-in Monitor Type
RealServer " Windows" server F5RealMon.dll Real Server
RealServer UNIX server f5realmon.so Real Server
Windows server with WMI f5isapi.dll or WMI

FS5Isapi6d.dll or
F5.IsHandler.dll

Windows 2000 Server server SNMP agent SNMP DCA and SNMP DCA
Base

UNIX server UC Davis SNMP agent SNMP DCA and SNMP DCA
Base

Overview of implementing a RealServer monitor

For RealSystem® Server systems, the BIG-IP” system provides a monitor plug-in that gathers the necessary
metrics when you have installed the plug-in on the RealSystem Server system. Configuring a RealSystem
Server for Dynamic Ratio load balancing consists of four tasks:

+ Installing the monitor plug-in on the RealSystem Server system

+ Configuring a Real Server monitor on the BIG-IP system

+ Associating the monitor with the server to gather the metrics

* Creating or modifying the server pool to use Dynamic Ratio load balancing

Dynamic Ratio Load Balancing

Installing the monitor plug-in on a RealSystem server system (Windows version)

Perform this task to install the monitor plug-in on a RealSystem Server system (Windows version).

1.

Download the monitor plug-in F5RealServerPlugin.dll from the BIG-IP® system. The plug-in is
located in the folder /usr/local/www/docs/agents.

Copy F5RealServerPlugin.dll to the RealServer plug-ins directory. (For example, C:\Program
Files\RealServer\plug-ins.)

If the RealSystem Server process is running, restart it.

Once the plug-in is installed and compiled, you must configure a Real Server monitor, associate the configured
monitor with the node (a RealSystem Server server), and set the load balancing method to Dynamic Ratio.

Installing and compiling a Linux or UNIX RealSystem server monitor plug-in

Perform this task to install and compile a Linux or UNIX RealSystem Server monitor plug-in.

1.

Using the .iso image, burn a CD-ROM of the BIG-IP" system software.

2. On the CD, navigate to the directory /downloads/rsplug-ins.
3.
4. On the BIG-IP system, change to the directory /var/tmp:

Copy the file F5RealMon.src.tar.gz to the directory /var/tmp on the BIG-IP system.

cd /var/tmp

Use the UNIX tar command to uncompress the file F5RealMon.src.tar.gz:
tar -xvzf F5SRealMon.src.tar

Change to the FSRealMon.src directory:
cd F5RealMon.src

Type the 1s command to view the directory contents.

. To compile the source, use the instructions in the file build unix note.

9. Start RealSystem Server.

Once the plug-in is installed and compiled, you must configure a Real Server monitor, associate the configured
monitor with the node (a RealSystem Server server), and set the load balancing method to Dynamic Ratio.

Overview of implementing a WMI monitor

166

For Windows running Windows Management Instrumentation (WMI), the BIG-IP® system provides a Data
Gathering Agent for the IIS server. Configuring a Windows platform for Dynamic Ratio load balancing
consists of these tasks:

Installing the Data Gathering Agent on the IIS server.

Configuring a WMI monitor on the BIG-IP system.

Associating the monitor with the server to gather the metrics.

Creating or modifying the server pool to use the Dynamic Ratio load balancing method.

Important: To enable a user to access WMI metrics on a Windows server, you must configure the WMI
monitor on the BIG-IP system correctly.

BIG-IP® Local Traffic Manager™: Concepts

The procedure for installing the Data Gathering Agent on an IIS server differs depending on whether the
server is running IIS version 5.0, 6.0, or 7.0, and whether the Data Gathering Agent is the file f5isapi.dll
(or £5isapi64.dll) or the file F5.IsHandler.dll.

Tip: F5 Networks® recommends that you install only the Data Gathering Agent file that pertains to your
specific configuration. Installing multiple Data Gathering Agent files could result in unwanted behavior.

[IS version support for the data gathering agent files

The procedure for installing the Data Gathering Agent on an IIS server differs depending on whether the
server is running IIS version 5.0, 6.0, or 7.0, and whether the Data Gathering Agent is the file f5isapi.dll
(or f5isapi64.dll)orthe file F5. IsHandler.d11. This table shows each of the Data Gathering Agent
files and the IIS versions that support each file.

Data Gathering Agent IIS version 5.0 IIS version 6.0 IIS version 7.0

f5isapi.dll (32-bit) X X N/A
f5isapi64.dll (64-bit)

F5.IsHandler.dll N/A X X
(32-bit, 64-bit, and .NET)

Installing the Data Gathering Agent f5Sisapi.dll or f5isapi64.dll on an IIS 5.0 server

You can install the file f5isapi.dll or f5isapi64.d1l1 on IIS versions 5.0 or 6.0.

Important: Do not install either of these files on I1S version 7.0 or 7.5. For IS servers running version 7.0
or 7.5, install the file F5. IsHandler.d11 instead.

Perform this task to install the Data Gathering Agent f5Isapi.dll or f5isapi64.dll on an IIS 5.0 server.

1.

Download the Data Gathering Agent (£5Isapi.dll or f5isapi64.d11) from the BIG-IP® system
to the Windows platform. You can find this plug-in in either the /var/windl1ls or the
/usr/local/www/docs/agents directory on the BIG-IP system.

2. Copy f5isapi.dll or f5isapi64.dll to the directory C:\Inetpub\scripts.

. Open the Internet Services Manager.

In the left pane of the Internet Services Manager, open the folder machine name\Default Web
Site\Script, where machine name is the name of the server you are configuring. The contents of
Scripts folder opens in the right pane.

In the right pane, right-click fSisapi.dll or fSisapi64.dll, and select Properties. The Properties dialog
box for f5isapi.dll or f5isapi64.dll opens.

6. Clear Logvisits. (Logging of each visit to the agent quickly fills up the log files.)
7. Click the File Security tab.

10.
11.

The File Security options appears.

In the Anonymous access and authentication control group box, click Edit.
The Authentication Methods dialog box opens.

In the dialog box, clear all check boxes, then select Basic Authentication.
In the Authentication Methods dialog box, click OK to accept the changes.

In the Properties dialog box, click Apply.
The WMI Data Gathering Agent is now ready to be used.

167

Dynamic Ratio Load Balancing

Once you have installed the plug-in, you must configure a WMI monitor, associate the configured monitor
with the pool member, and set the load balancing method to Dynamic Ratio.

Installing the Data Gathering Agent f5isapi.dll or fSisapi64.dll on an IIS 6.0 server

You can install the file f5isapi.dll or f5isapi64.dll on IIS versions 5.0 or 6.0.

Important: Do not install either of these files on IIS version 7.0 or 7.5. For IIS servers running version 7.0
or 7.5, install the file F5. IsHandler.d11 instead.

Perform this task to install the Data Gathering Agent f5isapi.dll or f5isapi64.dll on an IIS 6.0 server.

1.

AN

Create a scripts directory under the web site document root (C: \InetPub\wwwroot for Default
Website).

Set the properties of the scripts directory to scripts and executables.

Copy the file f5isapi.dll or £5isapi64.dll to the created scripts directory.

Start IIS manager (inetmgr) and navigate to the scripts directory.

On the right pane, select the file name f5isapi.dll or f£5isapi64.dll.

Select Properties->File Security->Authentication and Access Control and ensure that the settings

anonymous user and Basic Authentication are checked.

If you want to allow all unknown extensions, then in IIS Manager, navigate to Web Server Extensions

-> All Unknown ISAPI extensions and allow all unknown extensions. Otherwise, proceed to step 8.

If you want to allow the file £5isapi.dl1lor £5isapi64.d11 only, navigate to Web Server Extensions

-> Tasks: Add a New Webserver Extension. Then:

a) Inthe Name field, select F5 ISAPI and click Add for the required files. This requests a path to the
file.

b) Browse to the file £5isapi.dll or £5isapi64.dll, using the path
C:\InetPub\wwwroot\scripts\f5isapi.dll for Default Website, and click OK.

¢) Check the Set Extension Status to Allowed box, and click OK. The value F5 ISAPI should now
appear in the extensions list as Allowed.

Once you have installed the plug-in, you must configure a WMI monitor, associate the configured monitor
with the pool member, and set the load balancing method to Dynamic Ratio.

Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 6.0 server

168

You can install the file F5.IsHandler.d11 on IIS versions 6.0 and 7.0.

Perform this task to install the Data Gathering Agent F5.IsHandler.dll on an IIS 6.0 server.

1.

Create a scripts directory under the directory C: \Inetpub. (C:\Inetpub\scripts).

2. Create a \bin directory under the scripts directory (C: \Inetpub\scripts\bin).
3.
4. Copy the file F5.IsHandler.d11 to the directory C: \Inetpub\scripts\bin.

Set the properties of the scripts directory to scripts and executables.

Inthe C:\Inetpub\scripts directory, create the file web.config. This example shows aweb.config
file on an IIS server running version 6.0. In the example, the path value £5isapi . d11, although appearing

BIG-IP® Local Traffic Manager™: Concepts

to be incorrect, is actually correct. It is the type value, F5. IsHandler, that directs the server to the
correct file.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.web>
<httpHandlers>
<clear />
<add verb="*" path="f5isapi.dll" type="F5.IsHandler" />
</httpHandlers>
</system.web>
</configuration>

5. From the Start menu, choose Control Panel and double-click Administration Tools.

6. Double-click Internet Information Services.
This opens the IIS Management Console.

7. Expand the name of the local computer.
8. Allow the file ASP.NET v2.0build number:
a) Select Web Server Extensions.

b) Select ASP.NET v2.0build number.
¢) Click Allow.

9. Create a new virtual directory named scripts:
a) Expand Websites and Default web Site.
b) Right-click Default web Site,choose New, and choose Virtual Directory.
¢) Click Next.
d) Type scripts for the alias and click Next.
e) Type the directory you created in step 1 (C: \Inetpub\scripts\) and click Next.
f) Click Next again.
g) Click Finished.

10. Create an application pool for the file F5. IsHandler.d11:

a) Right-click Application Pools, choose New, and choose Application Pool.
b) Type F5 Application Pool in the Application Pool ID box and click OK.

11. Right click seripts and select properties.
12. Set up the application pool:

a) Click the Virtual Directory tab.
b) From the Application Pool list, select FS Application Pool.

13. Set up the mappings:
a) Click the Configuration button.
b) On the Mappings tab of the Application Configuration screen, click Add.
c) Forthe executable, type the file name C: \WINDOWS\Microsoft.NET\Framework\v2.0.50727\
aspnet isapi.dll.
d) For the file name extension, type .d11.
e) Clear the box for Check that file exists and click OK.
f) On the Application Configuration screen, click OK.

14. Set up directory security:

169

Dynamic Ratio Load Balancing

15.

16.
17.

a) Click the Directory Security tab.

b) Click the Edit button.

c) Disable authentication by clicking the Anonymous Access and Integrated Windows box.
d) Check the Basic Authentication box and click OK.

Note: If you are not authenticating locally, you might need to set the default domain or realm.

Set up the ASP.NET program:
a) Click the ASP.NET tab.
b) From the ASP.NET version list, select 2.0.buildnumber (for example 2.0.50727).

On the scripts Properties page, click OK.

Set up access to the I1IS metabase:

a) Run the command aspnet regiis -ga <ASP.NETUsername>.

b) See the web site http://support.microsoft.com/?kbid=267904.

Once you have installed the plug-in, you must configure a WMI monitor, associate the configured monitor
with the pool member, and set the load balancing method to Dynamic Ratio.

Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 7.0 server

170

Important: Do not install the files f5isapi.dl]l or f5isapi64.d11 on IIS version 7.0.

Perform this task to install the Data Gathering Agent F5.IsHandler.dll on an IIS 7.0 server

1.

2
3.
4

Create a scripts directory under the directory C: \Inetpub. (C:\Inetpub\scripts).

. Create a \bin directory under the scripts directory (C: \Inetpub\scripts\bin).

Copy the file F5. IsHandler.d11 to the directory C: \Inetpub\scripts\bin

. Inthe C:\Inetpub\scripts directory, create the file web.config. This figure shows an example of

web.config file on an IIS server running version 7.0.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<handlers>
<clear />
<add name="F5IsHandler" path="f5isapi.dll"
verb="*" type="F5.IsHandler" modules="ManagedPipelineHandler"

scriptProcessor="" resourceType="Unspecified" requireAccess="Script"
preCondition="" />
</handlers>
<security>
<authentication>

<anonymousAuthentication
enabled="false" />
</authentication>
</security>
</system.webServer>
</configuration>

BIG-IP® Local Traffic Manager™: Concepts

Important: In this example, the path value £5isapi.dl11, although appearing to be incorrect, is
actually correct. It is the type value, F5. IsHandler, that directs the server to the correct file.

5. Allow anonymous authentication to be overridden by using the appcmd command to set the override
mode in the machine-level applicationHost.config file.

appcmd set config "Default Web Site/scripts"
/section:anonymousAuthentication /overrideMode:Allow

/commit : APPHOST

6. Set up a new application pool for the file F5.IsHandler.d11:
a) From the Start menu, choose Control Panel.
b) Choose Administrative Tools
c) Choose Internet Information Services (IIS) Manager.
d) From Connections, expand MachineName (MachineName\UserName).
e) Right click the Application Pools menu and choose Add Application Pool.
f) Inthe Name box, type F5 Application Pool.
g) Click OK.

7. Create a new application named scripts:
a) Expand Web Sites and MachineName.
b) Right-click MachineName and choose Add Application.
¢) In the Alias box, type scripts.
d) To change the application pool, click Select.
e) For the physical path, type the directory you created in step 1 (C: \Inetpub\scripts\).
f) Click OK.

8. Change the Authentication setting to Basic Authentication:
a) Select scripts.
b) In the center pane, double click Authentication.

c) Verify that the status of all items under Authentication is Disabled, except for the Basic
Authentication item. To enable or disable an authentication item, right click the name and choose
Enable or Disable.

9. Ensure that the bin directory and/or the webconfig files are removed from the hidden segments list.

10. To view a list of hidden items, click the scripts application (see step 7), double-click Request Filtering,
and click the Hidden Segments section.

Once you have installed the plug-in, you must configure a WMI monitor, associate the configured monitor
with the pool member, and set the load balancing method to Dynamic Ratio.

Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 7.5 server

Important: Do not install the files f5isapi.dll or f5isapi64.d11 on IIS version 7.5. For IIS servers
running version 7.5, always install the file F5. IsHandler.dl11.

Perform this task to install the Data Gathering Agent F5.IsHandler.dll on an IIS 7.5 server

171

Dynamic Ratio Load Balancing

172

El ol S

Create a scripts directory under the directory C: \Inetpub (C:\Inetpub\scripts).
Create a \bin directory under the scripts directory (C:\Inetpub\scripts\bin).
Copy the file F5. IsHandler.d11 to the directory C: \Inetpub\scripts\bin

In the C: \Inetpub\scripts directory, create the file web.config.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<handlers>
<clear />
<add name="F5IsHandler" path="f5isapi.dll"
verb="*" type="F5.IsHandler"
modules="ManagedPipelineHandler"
scriptProcessor="" resourceType="Unspecified"
requireAccess="Script" preCondition=""
/>
</handlers>
<security>
<authentication>
<anonymousAuthentication enabled="false"
/>
</authentication>
</security>
</system.webServer>
</configuration>

Important: In the above example, the path value £5isapi.dl11, although appearing to be incorrect,
is actually correct. It is the type value, F5. IsHandler, that directs the server to the correct file.

Allow anonymous authentication to be overridden by using the appcmd command to set the override
mode in the machine-level applicationHost.config file.

appcmd set config "Default Web Site/scripts"
/section:anonymousAuthentication
/overrideMode:Allow /commit:APPHOST

Note: appcmd is located in \windows\system32\intesrv.

Set up a new application pool for the file F5.IsHandler.d11l:

a) From the Start menu, choose Control Panel.

b) Choose Administrative Tools.

¢) Choose Internet Information Services (IIS) Manager.

d) From Connections, expand MachineName (MachineName\UserName).

e) Right click the Application Pools menu and choose Add Application Pool.

f) Inthe Name box, type F5 Application Pool.

g) Click OK.

h) From the Application Pools list, right click F5 Application Pool and choose Advanced Settings.

i) Under the Process Model List, click Identity, and then click the button to the right of
ApplicationPoolldentity.

j) Click the drop down for Built-in account, and choose NetworkService.

k) Click OK.

1) Click OK.

7. Create a new application named scripts:

BIG-IP® Local Traffic Manager™: Concepts

a) Expand Web Sites and MachineName.
b) Right click MachineName and choose Add Application.
c) In the Alias box, type scripts.

d) Change the application pool, click Select, select F5 Application Pool from the Application Pool
drop-down, and click OK.

e) For the physical path, type the directory you created in step 1 (C: \Inetpub\scripts)\).
f) Click OK.

8. Change the Authentication setting to Basic Authentication:
a) Select scripts.
b) In the center pane, double click Authentication.
c) Verify that the status of all items under Authentication is Disabled, except for the Basic
Authentication item. To enable or disable an authentication item, right click the name and choose
Enable or Disable.

Once you have installed the plug-in, you must configure a WMI monitor, associate the configured monitor
with the pool member, and set the load balancing method to Dynamic Ratio.

173

Index

A

Accept-Encoding header
about 77
Action on Service Down setting 51
administrative partitions
and iRules 159
algorithms
for load balancing 53
all-match strategy
about 37
Application Acceleration Manager
enabling 78, 82
authentication
with PAM 123
authentication modules
types of 123
automatic node creation 46
availability
of pool members 55

B

best-match strategy
about 37
Browsers
workarounds for compression 77

C

cache server pools 157
certificate-based authorization
and SSL LDAP 125
certificate revocation
with CRLDP 128
with SSL OCSP 126
certificates
and LDAP database 125
chunked encoding 65
chunking actions 66
classification
of traffic 153
class match command 162
client access
controlling through LDAP 125-126
client credentials
and HTTP 124
client requests
distributing 49
client traffic
redirecting to virtual servers 111
clone pools
described 32
clustered multiprocessing 35
CMP 35
compression
configuring for symmetric optimization 89
connection management 19

Index

connection overload 51
connection pooling

and XForwarded For header 68, 70

with OneConnect 129
connection rate limitvirtual serverspool membersnodes

about 31

about connection rate limits 31
connection reaping 19
Connection reaping 20
connections

and NATs 143, 145

and SNATs 148-149

resuming 140
connection timeouts 20-21
content adaptation

for requests/responses 86
content-based routing 92
Content-Type header 101
content types

for HTML content modification 101
cookie decryption 68
cookie encryption 68
cookie insertion

into HTTP headers 107-109
cookie persistence

defined 107
cookie persistence methods 107
cookies

from servers 108
cookie values

mapping to nodes 108

overwriting 107
counters

and Statistics profiles 132
CRLDP authentication

defined 128
CRLs

and CRLDP 128

and SSL OCSP 126
custom profiles

60
as parent profiles 61

D

data gathering agents

installing 167-168, 170-171
data groups

defined 162

storage of 163
data streams

replacing strings in 133
default profiles

about 59

as parent profiles 61
destination address persistence

defined 110

175

Index

destinations

and virtual servers 27
Diameter messages

sending 86
Diameter profile

purpose of 86
disabling and enabling pool members 51
DNS profile type

defined 133
DNSSEC

enabling 85
DNS traffic

managing 85
domain translation

and Set-Cookie header 92
dropped connections 31
dynamic load balancing

and plug-ins 141

E

electronic trading
about configuring FIX profile 96
about logging FIX messages 98
about steering traffic 96
about tag substitution 96
about using SSL encryption 98
about validating FIX messages 96
error codes
from HTTP server responses 65
event declarations
defined 156
excess client headers 71
excess server headers 72
explicit proxy settings
72
bad request message 74
bad response message 74
connection failed message 73
default connect handling 73
DNS lookup failed message 73
dns resolver 72
host names 73
route domain 72
tunnel name 73

F

F5.IsHandler.dll file

installing 168, 170-171
fSlsapi.dll file

installing 167-168
f5lsapie4.dll file

installing 167-168
failure

and pool members 52
fallback error codes 65
fallback hosts 64
Fast HTTP profiles

purpose and benefits 116
Fast L4 profiles

purpose of 115

176

Fast L4 profile settings
partial listing of 116
first-match strategy
about 37
FIX profile
about configuring for electronic trading 96
about full parsing validation 96
about logging FIX messages 98
about quick parsing validation 96
about steering traffic 96
about tag substitution 96
about using SSL encryption 98
about validating FIX messages 96
FIX protocol
supported versions 96
FTP commands
translating for IPv6 84
FTP traffic
managing 84

H

hardware acceleration
for Layer 4 traffic 115
hash method
for cookie persistence 108
hash persistence
creating 110
defined 110
header contents
erasing 65
header insertion
for pool members 107
headers
intercepting 107
header size
of HTTP requests 71
health monitors
about 45
and pools 50
specifying minimum 50
HTML content
manipulating 102
modifying 101
HTML rules
types of 101
HTML tag attributes
modifying 101
HTTP::redirect command 158
HTTP/1.1 pipelining 72
HTTP allow truncated redirect 71
HTTP basic auth realm 64
HTTP compression
and buffering size 76
and HTTP/1.0 77
and server response length 76
browser workarounds for 77
managing Content-Type responses with 75
managing URI responses with 75
HTTP compression methods 76
HTTP Compression profile
about 74, 81

HTTP Compression profile (continued)
options 75, 82
HTTP content adaptation 86
HTTP cookie persistence
defined 107
HTTP error codes
and fallback 65
HTTP excess client headers 71
HTTP excess server headers 72
HTTP header insertion 65
HTTP Location header 67
HTTP maximum header count 71
HTTP oversize client headers 71
HTTP oversize server headers 71
HTTP parent profile 64
HTTP profile introduction 63
HTTP profiles
and proxy mode 63
purpose of 63
Via Header settings 69
HTTP proxy mode 63
HTTP redirection 64
HTTP redirections
rewriting 67
HTTP request header size 71
HTTP request latency
minimizing 93
HTTP requests
initiating multiple 72
HTTP response headers 65
HTTP unknown methods 72

ICAP profiles
for content adaptation 86
ICAP servers
for content adaptation 86
idle connections 19-20
idle server-side connections 20
idle timeout settings 21
IDS systems
copying traffic to 32
iFile commands 164
iFile files
defined 163
s
installing agents on 167-168, 170-171
IIS version support 167
inbound connections
and NATs 143
and SNATs 148
IP address encoding
for cookie persistence 108
IPv4 address format
converting to IPv4 85
IPv6 address format
and FTP traffic 84
iRule commands
and hash persistence 110
types of 156, 160
iRule context 159

Index

iRule evaluation 159

iRule event types 159

iRules
and counters 132
and profiles 161
and virtual servers 160
basic elements of 155
described 155
for HTML content replacement 101
for persistence 113
ordering of 160

iSession profiles
about 89
modifying compression 89

K

Kerberos authentication
defined 128

L

LAN traffic optimization
and TCP protocol 118
latency
minimizing 93
Layer 4 processing
offloading to hardware 115
LDAP
and record matching 125
LDAP authentication
defined 124
for access control 124
LDAP authorization
types of 126
LDAP credentials
types of 125
LDAP database
searching 125
linear white space 68
load balancing methods 53
load balancing pools
about 49
Local Traffic Manager module
summary of 19
local traffic policy matching
about 37
about actions 41
about all-match strategy 37
about best-match strategy 37
about conditions 38
about first-match strategy 37
about matching strategies 37
about rules 38
actions operands settings 41
controls settings 38
operands settings 39
requires settings 38
logging
for DNS traffic 133
for HTTP traffic 133

177

Index

M

Manual Resume feature 140
mean opinion score, See MOS
message-oriented applications
and SCTP profiles 120
methods, unknown 72
Microsoft RDP persistence
defined 111
mirroring
of connections 31
monitor associations 142
monitor destinations 138
monitoring
types of 135
monitor instances 142
monitor plug-in files 165
monitor plug-ins
and dynamic load balancing 141
monitors
and pools 50
custom 137
pre-configured 136
removing 46
specifying minimum 50
types of 136
monitor settings
about 136
MOS
and Video Quality of Experience 99
MPTCP
and mobile traffic optimization 119
MSRDP persistence
defined 111

N

named counters
and Statistics profiles 132
NATs
and pools 51
defined 143
for inbound connections 143
for outbound connections 145
network map
about 21
network map display 22
node addresses
and route domain IDs 45
node address setting
about 45
node availability 46
node command 157
nodes
and connection rates 47
assigning ratio weights to 47
associating monitors with 142
creating automatically 46
creating explicitly 46
defined 45
node states 47
node status 47

178

NTLM
and OneConnect 131
NTLM profile type
defined 131

O

object filtering 21
object relationships 22
object summary display 22
OCSP authentication
defined 126
OneConnect
and NTLM 131
OneConnect connection pooling 66
OneConnect feature
and SNATs 148
OneConnect profiles
purpose of 105
OneConnect profile type
defined 129
operators
defined 156
outbound connections
and NATs 145
and SNATs 149
oversize server headers 71

P

Packet Velocity ASIC
for Layer 4 traffic 115
PAM technology
defined 123
parent profiles 60
partitions
and iRules 159
passwords
and NTLM profiles 131
path translation
and Set-Cookie header 92
persistence
about 103
and destination IP addresses 110
and pools 106
and source IP addresses 112
and virtual addresses 105, 107
and virtual servers 106
for Microsoft RDP environments 111
for SIP traffic 112
for SSL sessions 112
using iRules 113
persistence criteria
specifying 105
persistence mirroring
about 31
persistence profiles
types of 103
plug-ins
and dynamic load balancing 141
pool command 157
pool features 49

pool member availability 55
pool members
and passive failure 52
pool member services 51
pool member settings 56
pool member states 58
pool member status 58
pools
about 49
and cookie persistence 107
and health monitors 50
and QoS levels 52
and session persistence 106
and ToS levels 51
purpose of 49
pools and pool members
associating monitors with 142
pool status 58
port 443
and rewriting redirections 67
port 4443
and rewriting redirections 67
port encoding
for cookie persistence 109
ports
and cookie persistence 109
priority group activation 55
profile command 161
profiles
about HTTP Compression 74, 81
about iSession 89
about TCP 117
about Web Acceleration 78, 82
and iRules 161
and virtual servers 61
default 59
defined 81
described 59
Web Acceleration settings 78, 82
profile settings
inheriting 61
overriding with iRules 162
profile types
59
miscellaneous 129
Protocol profiles 115
Proxy Via header 68
PVA acceleration
for Layer 4 traffic 115

Q

QOE, See video Quality of Experience
QoS levels

and pools 52
Quality of Service levels

and pools 52

R

RADIUS authentication
defined 124

Index

RADIUS messages

sending 87
RADIUS profiles

purpose of 87
RealNetworks servers

and dynamic load balancing 141
RealServer monitors 165
RealSystem monitor plug-in

installing and compiling 166
reaping 20
record matching

and SSL LDAP 125
remote authentication

and CRLDP 128

with Kerberos delegation 128

with LDAP 124

with RADIUS 124

with SSL LDAP 124

with SSL OCSP 126

with TACACS+ 124
remote authentication modules

types of 123
Request Adapt profiles

for content adaptation 86
request latency

minimizing 93
Request Logging profile type

defined 133
requests

queuing 52
resource availability

designating 140
Response Adapt profiles

for content adaptation 86
response chunking 65
Reverse mode 139-140
reverse proxy servers 91
Rewrite profiles

about 90

rules for URI matching 91
route domain IDs

for virtual server addresses 29
RTSP protocol

defined 85

over UDP 85
RTSP proxy configuration

described 85

S

SCTP profiles
defined 120
server arrays
optimizing 110, 112
server availability
designating 140
server connections
pooling of 129
server information
as cookies 108
server load balancing 53

179

Index

server names
and cookie persistence 108
as cookies 107
servers
and cookie generation 108
service availability 51
service interruptions 31
session broker 111
session broker tokens 111
session data
ignoring 104-105
session directory 111
session persistence
about 103
and OneConnect 104
and pools 106

and virtual addresses 105, 107

and virtual servers 106
session persistence profiles
types of 103
Set-Cookie header
translation of 92
Set-Cookie translation
about 90
simple persistence
defined 112
SIP persistence
defined 112
SIP protocol
defined 87, 112
Slow Ramp Time setting 51
snat and snatpool commands 158
SNAT automap feature 150-151
SNAT pools 150-151
SNATs
and pools 51
and VLANs 152
defined 30, 147
for inbound connections 148
for outbound connections 149
SNAT translation 150-152
SNAT types 151
SNMP agents

and dynamic load balancing 141

SOCKS profile
described 95
source address persistence
defined 112
source |IP addresses
and OneConnect 129
SPDY protocol
purpose of 93
SSL certificates
and LDAP 125
SSL LDAP
and record matching 125
SSL LDAP authentication
defined 124
SSL OCSP authentication
defined 126
SSSL persistence
defined 112

180

Statistics profile type
defined 132

sticky persistence
defined 110

storage
of data groups 163

streaming-media servers
controlling 85

Stream profile type
defined 133

string replacement
with Stream profiles 133

T

TACACS+ authentication
defined 124
tag replacement
in HTML content 102
Tcl
and iRules 155
Tcl expressions
for header insertion 65
TCP express

optimizing mobile traffic 118-119

TCP Express 115
TCP profiles
about 117

and mobile traffic optimization 118-119

optimized for LANs 118
optimized for WANs 118
TCP request queuing 52
timeouts
for server-side connections 20
for session persistence 20
timeout settings 19
Time Until Up feature 141
Tools Command Language
and iRules 155
ToS levels
and pools 51
traffic classes
defined 153
traffic control
through profiles 59
traffic filters
default 59
Transparent mode 139-140
Type of Service levels
and pools 51

U

UDP profiles 120
UIE persistence

and iRules 113
Universal Inspection Engine 113
unknown methods 72
URI rules

requirements for specifying 92
URI translation

and Set-Cookie header 92

URI translation (continued)

example of 90-91
URI translation rules 91
user credentials

and NTLM profiles 131
user groups

and LDAP 125-126
user roles

and LDAP 125-126

Vv

Vary header
about 76
Via header
about identifying intermediate routers 69
about identifying protocols for intermediate routers 69
about using in requests and responses 68
overview 68
video quality of experience
about 98
video Quality of Experience
and mean opinion score 99
and MOS 99
virtual addresses
about 33
and session persistence 105
virtual address status 35
virtual server destinations 27

Index

virtual servers
and iRules 160
and route domains 29
and session persistence 106
defined 25
virtual server settings 25
virtual server status 35
virtual server types 25
VLAN groups
and Packet Velocity ASIC 115
VLANSs
and SNATs 152

\W

WAN traffic optimization

and TCP protocol 118
Web Acceleration profile

about 78, 82

settings 78, 82
Web Acceleration Profile

tmsh statistics description 83
Windows servers

and dynamic load balancing 141
Windows session directory 111

X

XForwarded For header 68, 70
XML content-based routing 92

181

Index

182

	Table of Contents
	Legal Notices and Acknowledgments
	Legal Notices
	Acknowledgments

	Introduction to Local Traffic Manager
	What is BIG-IP Local Traffic Manager?
	Timeout settings for connections and sessions
	Connection reaping
	Idle timeout options
	Idle timeout settings that affect connection reaping

	Other timeout settings
	Idle timeout settings that do not affect connection reaping

	About the network map
	The filtering mechanism
	Object summary
	The network map display

	Virtual Servers
	Introduction to virtual servers
	About virtual server settings
	Types of virtual servers
	About source and destination addresses
	About source addresses
	About host destination addresses
	About network destination addresses
	About route domain IDs

	About destination service ports
	Status notification to virtual addresses
	About profiles for traffic types
	About VLAN and tunnel assignment
	About source address translation (SNATs)
	About bandwidth control
	About traffic classes
	About connection and rate limits
	About connection and persistence mirroring
	About destination address and port translation
	About source port preservation
	About clone pools
	About auto last hop
	About NAT64
	Virtual server resources

	About virtual address settings
	About automatic deletion
	About traffic groups
	About route advertisement
	About ARP and virtual addresses
	About ICMP echo responses

	Virtual server and virtual address status
	Clustered multiprocessing

	Local Traffic Policies
	About local traffic policy matching
	About strategies for local traffic policy matching
	Local traffic policy matching Requires profile settings
	Local traffic policy matching Controls settings

	About rules for local traffic policy matching
	About conditions for local traffic policy matching
	Local traffic policy matching Conditions operands

	About actions for a local traffic policy rule
	Local traffic policy matching Actions operands

	Nodes
	About nodes
	About the node address setting
	About health monitor association
	About monitors and automatic node creation
	About monitors and explicit node creation
	About monitor removal
	About node availability
	About the ratio weight setting
	About the connection rate limit setting
	About node state
	About node status

	Pools
	Introduction to pools
	About load balancing pools
	Pool features
	About health monitor association
	Pool member availability
	Secure network address translations (SNATs) and network address translations (NATs)
	Action when a service becomes unavailable
	Slow ramp time
	Type of Service (ToS) level
	Quality of Service (QoS) level
	Number of reselect tries
	About TCP request queue
	About load balancing methods
	Local Traffic Manager load balancing methods

	About priority-based member activation

	Pool member features
	About pool member state

	Pool and pool member status

	Profiles
	Introduction to profiles
	Profile types
	Default profiles
	Custom and parent profiles
	The default profile as the parent profile
	The custom profile as the parent profile
	Profiles and virtual servers

	HTTP Profiles
	Introduction to HTTP profiles
	General HTTP properties
	Proxy mode
	Parent profile

	HTTP settings
	Basic Auth Realm
	Fallback host
	Fallback error codes
	Headers in HTTP requests
	Content erasure from HTTP headers
	Headers in an HTTP response
	Response chunking
	Possible chunking behaviors of Local Traffic Manager

	OneConnect transformations
	Rewrites of HTTP redirections
	Examples of rewriting HTTP redirections with the system listening on port 443
	Examples of rewriting HTTP redirections with the system listening on port 4443

	Cookie encryption and decryption
	X-Forwarded-For header insertion
	Maximum columns for linear white space
	Linear white space separators
	Maximum number of requests
	Proxy Via headers
	Overview: Using Via headers
	About using Via headers in requests and responses
	About identifying intermediate routers with a Via header
	About identifying protocols for intermediate routers with a Via header

	Via Header settings

	X-Forwarded-For header acceptance
	Alternate X-Forwarded-For headers
	Server agent name

	Enforcement settings
	Allow truncated redirects
	Maximum header size
	Oversize client headers
	Oversize server headers
	Maximum header count
	Excess client headers
	Excess server headers
	Support for pipelining
	Unknown methods

	Explicit proxy settings
	DNS Resolver
	Route Domain
	Tunnel Name
	Host Names
	Default Connect Handling
	Connection Failed Message
	DNS Lookup Failed Message
	Bad Request Message
	Bad Response Message

	sFlow settings
	Polling intervals
	Sampling rates

	About HTTP compression profiles
	HTTP Compression profile options
	URI compression
	Content compression
	Preferred compression methods
	Minimum content length for compression
	Compression buffer size
	About the Vary header
	Compression for HTTP/1.0 requests
	About the Accept-Encoding header
	Browser workarounds

	About Web Acceleration profiles
	Web Acceleration profile settings

	Other Application-Layer Profiles
	Overview of other application-layer profiles
	About HTTP compression profiles
	HTTP Compression profile options

	About Web Acceleration profiles
	Web Acceleration profile settings
	Web Acceleration Profile statistics description

	FTP profiles
	DNS profiles
	RTSP profiles
	ICAP profiles
	Request Adapt and Response Adapt profiles
	Diameter profiles
	RADIUS profiles
	SIP profiles
	SMTP profiles
	SMTPS profiles
	About iSession profiles
	Screen capture showing compression settings

	Rewrite profiles
	About URI translation
	Rules for matching requests to URI rules
	About URI Rules
	About Set-Cookie header translation

	XML profiles
	SPDY profiles
	SPDY profile settings

	SOCKS profiles
	FIX profiles
	About FIX profile tag substitution
	About steering traffic using the FIX profile
	About validating FIX messages
	About using SSL encryption for FIX messages
	About logging FIX messages

	Video Quality of Experience profiles
	About the video Quality of Experience profile
	About mean opinion score

	Content Profiles
	Introduction to HTML content modification
	About content selection types
	Types of HTML rules
	Sample HTML rules configuration

	Session Persistence Profiles
	Introduction to session persistence profiles
	Persistence profile types
	Session persistence and iRules
	The OneConnect profile and session persistence
	HTTP parsing with and without a OneConnect profile
	Criteria for session persistence
	The Match Across Services setting
	The Match Across Virtual Servers setting
	The Match Across Pools setting

	Cookie persistence
	HTTP Cookie Insert method
	HTTP Cookie Rewrite method
	HTTP Cookie Passive method
	Cookie hash method
	IPv4 IP address encoding
	Port encoding

	Destination address affinity persistence
	Hash persistence
	Microsoft Remote Desktop Protocol persistence
	Benefits of Microsoft Remote Desktop Protocol persistence
	Microsoft Remote Desktop Protocol persistence server platform issues

	SIP persistence
	Source address affinity persistence
	SSL persistence
	Universal persistence

	Protocol Profiles
	About protocol profiles
	The Fast L4 profile type
	PVA hardware acceleration
	The Server Sack, Server Timestamp, and Receive Window settings

	The Fast HTTP profile type
	About TCP profiles
	About tcp-lan-optimized profile settings
	About tcp-wan-optimized profile settings
	About tcp-mobile-optimized profile settings
	About mptcp-mobile-optimized profile settings

	The UDP profile type
	The SCTP profile type
	The Any IP profile type

	Remote Server Authentication Profiles
	Introduction to authentication profiles
	BIG-IP system authentication modules

	The LDAP authentication module
	The RADIUS authentication module
	The TACACS+ authentication module
	The SSL client certificate LDAP authentication module
	Search results and corresponding authorization status
	SSL client certificate authorization
	SSL certificates for LDAP authorization
	Groups and roles for LDAP authorization

	The SSL OCSP authentication module
	The CRLDP authentication module
	The Kerberos Delegation authentication module

	Other Profiles
	Introduction to other profiles
	About OneConnect profiles
	OneConnect and HTTP profiles
	OneConnect and NTLM profiles
	OneConnect and SNATs

	About NTLM profiles
	The Statistics profile type
	The Stream profile type
	The Request Logging profile type
	The DNS Logging profile type

	Health and Performance Monitoring
	Introduction to health and performance monitoring
	Comparison of monitoring methods
	About monitor settings
	Overview of monitor implementation
	Pre-configured monitors
	Custom monitors

	Monitor destinations
	Transparent and Reverse modes
	Monitors that contain the Transparent or Reverse settings

	The Manual Resume feature
	Resumption of connections

	The Time Until Up feature
	Dynamic ratio load balancing
	Monitor plug-ins and corresponding monitor templates

	Monitor association with pools and nodes
	Monitor instances

	NATs
	Introduction to NATs
	NATs for inbound connections
	NATs for outbound connections

	SNATs
	About source address translation (SNATs)
	Comparison of NATs and SNATs

	SNATs for client-initiated (inbound) connections
	SNATs for server-initiated (outbound) connections
	SNAT implementation
	SNAT types
	About translation addresses
	Original IP addresses
	VLAN traffic

	Traffic Classes
	About traffic classes

	iRules
	Introduction to iRules
	Basic iRule elements
	Event declarations
	Operators
	iRule commands

	The pool command
	The node command
	Commands that select a pool of cache servers
	The HTTP::redirect command
	The snat and snatpool commands
	iRules and administrative partitions
	iRule evaluation
	Event types
	iRule context
	iRules assignment to a virtual server

	iRule command types
	iRules and profiles
	The profile command
	Commands that override profile settings

	Data groups
	About the class match command
	Storage options

	iFiles
	iFile commands

	Dynamic Ratio Load Balancing
	Introduction to dynamic ratio load balancing
	Monitor plug-ins and corresponding monitor templates

	Overview of implementing a RealServer monitor
	Installing the monitor plug-in on a RealSystem server system (Windows version)
	Installing and compiling a Linux or UNIX RealSystem server monitor plug-in

	Overview of implementing a WMI monitor
	IIS version support for the data gathering agent files
	Installing the Data Gathering Agent f5Isapi.dll or f5isapi64.dll on an IIS 5.0 server
	Installing the Data Gathering Agent f5isapi.dll or f5isapi64.dll on an IIS 6.0 server
	Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 6.0 server
	Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 7.0 server
	Installing the Data Gathering Agent F5.IsHandler.dll on an IIS 7.5 server

	Index

